
IEEE Std 1320.1-1998

IEEE Standard for Functional
Modeling Language—Syntax and
Semantics for IDEF0

Sponsor

Software Engineering Standards Committee
of the
IEEE Computer Society

Approved 25 June 1998

IEEE-SA Standards Board

Abstract: IDEF0 function modeling is designed to represent the decisions, actions, and activities
of an existing or prospective organization or system. IDEF0 graphics and accom-panying texts
are presented in an organized and systematic way to gain understanding, support analysis,
provide logic for potential changes, specify requirements, and support system-level design and
integration activities. IDEF0 may be used to model a wide variety of systems, composed of
people, machines, materials, computers, and information of all varieties and structured by the
relationships among them, both automated and nonautomated. For new systems, IDEF0 may be
used first to define requirements and to specify functions to be carried out by the future system.
As the basis of this architecture, IDEF0 may then be used to design an implementation that
meets these requirements and performs these functions. For existing systems, IDEF0 can be
used to analyze the functions that the system performs and to record the means by which these
are done.
Keywords: enterprise, functional modeling language, IDEF0, language, modeling language

The Institute of Electrical and Electronics Engineers, Inc.
345 East 47th Street, New York, NY 10017-2394, USA

Copyright © 1998 by the Institute of Electrical and Electronics Engineers, Inc.
All rights reserved. Published 1998. Printed in the United States of America.

ISBN 0-7381-0340-3

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior
written permission of the publisher.

IEEE Standards documents are developed within the IEEE Societies and the Standards Coordinating
Committees of the IEEE Standards Association (IEEE-SA) Standards Board. Members of the committees
serve voluntarily and without compensation. They are not necessarily members of the Institute. The
standards developed within IEEE represent a consensus of the broad expertise on the subject within the
Institute as well as those activities outside of IEEE that have expressed an interest in participating in the
development of the standard.

Use of an IEEE Standard is wholly voluntary. The existence of an IEEE Standard does not imply that
there are no other ways to produce, test, measure, purchase, market, or provide other goods and services
related to the scope of the IEEE Standard. Furthermore, the viewpoint expressed at the time a standard is
approved and issued is subject to change brought about through developments in the state of the art and
comments received from users of the standard. Every IEEE Standard is subjected to review at least every
five years for revision or reaffirmation. When a document is more than five years old and has not been
reaffirmed, it is reasonable to conclude that its contents, although still of some value, do not wholly reflect
the present state of the art. Users are cautioned to check to determine that they have the latest edition of
any IEEE Standard.

Comments for revision of IEEE Standards are welcome from any interested party, regardless of
membership affiliation with IEEE. Suggestions for changes in documents should be in the form of a
proposed change of text, together with appropriate supporting comments.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they
relate to specific applications. When the need for interpretations is brought to the attention of IEEE, the
Institute will initiate action to prepare appropriate responses. Since IEEE Standards represent a consensus
of all concerned interests, it is important to ensure that any interpretation has also received the
concurrence of a balance of interests. For this reason, IEEE and the members of its societies and
Standards Coordinating Committees are not able to provide an instant response to interpretation requests
except in those cases where the matter has previously received formal consideration.

Comments on standards and requests for interpretations should be addressed to:

Secretary, IEEE-SA Standards Board
445 Hoes Lane
P.O. Box 1331
Piscataway, NJ 08855-1331
USA

Authorization to photocopy portions of any individual standard for internal or personal use is granted by
the Institute of Electrical and Electronics Engineers, Inc., provided that the appropriate fee is paid to
Copyright Clearance Center. To arrange for payment of licensing fee, please contact Copyright Clearance
Center, Customer Service, 222 Rosewood Drive, Danvers, MA 01923 USA; (978) 750-8400. Permis-
sion to photocopy portions of any individual standard for educational classroom use can also be obtained
through the Copyright Clearance Center.

Note: Attention is called to the possibility that implementation of this standard may require
use of subject matter covered by patent rights. By publication of this standard, no position is
taken with respect to the existence or validity of any patent rights in connection therewith.
The IEEE shall not be responsible for identifying patents for which a license may be required
by an IEEE standard or for conducting inquiries into the legal validity or scope of those
patents that are brought to its attention.

Copyright © 1998 IEEE. All rights reserved. iii

Introduction

(This introduction is not part of IEEE Std 1320.1-1998, IEEE Standard for Functional Modeling Language—Syntax
and Semantics for IDEF0.)

This standard formally documents the Integration Definition 0 (IDEF0) language for function models in
two parts. The body of this standard describes the syntax and semantics of the IDEF0 language that are
required to draw the physical diagrams of a specific IDEF0 model. Annex B describes the syntax and
semantics of the IDEF0 language as an abstract formal structure and, therefore, provides the foundation
for the specifics found in the body of the standard. The diagrams discussed by the standard are real
instantiations in a concrete model of the mathematical formalisms of the IDEF0 Language Abstract
Formalization (the “language formalization”).

Background

During the 1970s, the US Air Force Program for Integrated Computer Aided Manufacturing (ICAM)
sought to increase manufacturing productivity through systematic application of computer technology.
The ICAM program identified the need for better analysis and communication techniques for people
involved in improving manufacturing productivity.

As a result, the ICAM program developed a series of modeling methodologies known as the ICAM
Definition (IDEF) methods, which include

a) IDEF0, used to produce a function model. A function model is a structured representation of the
functions within a system or subject area.

b) IDEF1, used to produce an information model. An information model represents the structure
and semantics of information within a system or subject area.

c) IDEF2, used to produce a dynamics model. A dynamics model represents the behavior of a
system or subject area as it varies over time.

IDEF0 was derived from a well-established graphical modeling method known as the Structured Analysis
and Design Technique (SADT). IDEF0 was developed by the originators of SADT, notably Douglas T.
Ross, under the ICAM program. In 1983, the US Air Force Integrated Information Support System
program enhanced the IDEF1 information modeling technique to develop IDEF1 extended (IDEF1X), a
semantic data modeling method.

Continued IDEF method developments followed to address needs for additional analytic methods. These
follow-on developments have been directed toward providing a mutually supportive family of methods that
are applicable to a broad range of enterprise improvement and integration strategies (e.g., concurrent
engineering, total quality management, business reengineering). Reflecting this general applicability, the
IDEF acronym has been recast to refer to an integrated family of Integration Definition methods.
Currently, IDEF0 and IDEF1X techniques are widely used in the government, industrial, and commercial
sectors, supporting modeling efforts for a wide range of enterprises and application domains. IDEF0 has
been widely adopted as the function modeling method of choice in large number of both military and
nonmilitary organizations in both North America and Europe.

In 1991, the National Institute of Standards and Technology (NIST) received support from the US
Department of Defense, Office of Corporate Information Management (DoD/CIM), to develop Federal
Information Processing Standards (FIPS) for modeling techniques for use by the federal government. One

Copyright © 1998 IEEE. All rights reserved.iv

product of this effort was FIPS PUB 183, Integration Definition for Function Modeling (IDEF0) [B2].a

This FIPS document was based on the IDEF specification manuals published by the US Air Force in the
early 1980s. At the same time, NIST also published FIPS PUB 184, Integration Definition for Information
Modeling (IDEF1X) [B3], to support data modeling for the federal government.

In 1993, the Institute of Electrical and Electronics Engineers (IEEE) Computer Society initiated a project
to establish IDEF standards across both industry and government within the standards framework of the
American National Standards Institute (ANSI). IEEE Std 1320.1-1998 for IDEF0 function models, based
on FIPS PUB 183 [B2], is a result of that effort.

This standard is explicitly oriented to the presentation of an IDEF0 model on paper pages; development of
an IDEF0 standard for other presentation media is deliberately not addressed by this document. However,
integrated into this standard is a mathematically founded formalization of an IDEF0 model. This
formalization allows users to separate what they conceive in conceptual space, that is, the model itself,
from their presentation of that model and from their presentation media. In earlier work, the IDEF0
diagram was not considered as something that should or could be distinguished from the paper page that
presents that diagram. However, the current formalization allows (indeed, forces) users to separate the
abstract structure of an IDEF0 model from the physical structure of the presentation of that model using
sheets of paper. An important conceptual and notational difference between this work and earlier work is
the clear distinction between an IDEF0 graphic diagram and the medium, e.g., a page of paper, that is
used to present that diagram.

New terminology has been presented to ensure that this distinction can be easily maintained, and a more
robust categorization of both the components of an IDEF0 model and of an IDEF0 diagram has been
introduced. This terminology ensures that the usage presented in the body of this standard is consistent
with the formalization presented in Annex B. In addition, these changes to the IDEF0 vocabulary will
facilitate the development of IDEF0 presentations in digital or other media.

The IDEF0 approach

IDEF0 includes both a modeling language and a comprehensive methodology for developing models. This
standard addresses only the syntax and semantics of the modeling language itself.

In addition to definition of the IDEF0 language, the IDEF0 methodology also prescribes procedures and
techniques for developing and interpreting models, including ones for data gathering, diagram
construction, review cycles, and documentation.

IDEF0 function modeling is designed to represent the decisions, actions, and activities of an existing or
prospective organization or system. For all its apparent simplicity, the method is surprisingly powerful
and effective. Like most modeling methods, the primary component of IDEF0 is a graphical language
whose constructs are intended to convey information of a certain sort. IDEF0 graphics and accompanying
texts are presented in an organized and systematic way to gain understanding, support analysis, provide
logic for potential changes, specify requirements, and support systems-level design and integration
activities. IDEF0 may be used to model a wide variety of systems, composed of people, machines,
materials, computers, and information of all varieties and structured by the relationships among them,
both automated and nonautomated. For new systems, IDEF0 may be used first to define requirements and
to specify functions to be carried out by the future system. As the basis of this architecture, IDEF0 may
then be used to design an implementation that meets these requirements and performs these functions. For

aThe numbers in brackets correspond to those of the bibliography in Annex A.

Copyright © 1998 IEEE. All rights reserved. v

existing systems, IDEF0 can be used to analyze the functions that the system performs and to record the
means by which these are done.

The result of applying IDEF0 to a system is a model that consists of a hierarchical series of diagrams, with
accompanying explanatory text, illuminating graphical, and defining glossary pages that are cross-
referenced to these diagrams. The two primary modeling components of a diagram are functions
(represented by named boxes) and the physical and data objects that interrelate those functions
(represented by labeled arrows).

As a function modeling language, IDEF0 has these characteristics:

a) It is comprehensive and expressive, capable of graphically representing a wide variety of
business, manufacturing, and other types of enterprise operations to any level of detail.

b) It is a coherent and simple language, allowing rigorous and precise expression and promoting
consistency of usage and interpretation.

c) It enhances communication among analysts, architects, developers, managers, and users through
its ease of learning and its emphasis on hierarchical exposition of detail.

d) It is well-tested and proven through many years of use by the USAir Force and other government
agencies and by private industry.

e) It can be generated by a variety of computer-based tools; several commercial products specifically
support development and analysis of IDEF0 diagrams and models.

As a system engineering technique, IDEF0 may be used for performing and managing needs analysis,
benefits analysis, requirements definition, functional analysis, systems design, maintenance, and baselines
for continuous improvement. IDEF0 models provide a “blueprint” of functions and their interfaces that
must be captured and understood in order to make systems engineering decisions that are logical,
affordable, integratable, and achievable. When used in a systematic way, IDEF0 provides a systems
engineering approach to

a) Performing systems analysis and design at all levels, including the entire enterprise, a system, or
a subject area;

b) Producing reference documentation concurrent with development to serve as a basis for
integrating new systems or improving existing systems;

c) Allowing collaborative team consensus to be achieved by shared understanding;

d) Managing large and complex projects using qualitative measures of progress; and

e) Providing a reference architecture for enterprise analysis, information engineering, and resource
management.

Typographic conventions

A word that has a special meaning for IDEF0 is italicized the first time that it is used in its specific sense
for IDEF0. There will be an entry in Clause 2 for each italicized word.

Copyright © 1998 IEEE. All rights reserved.vi

Figure conventions

The figures in this document have been prepared using the IDEF standard diagram form (SDF). The SDF
and its use are documented by both FIPS PUB 183 [B2] and FIPS PUB 184 [B3]. FIPS PUB 183 [B2] does
not standardize the SDF; instead, the SDF is covered in an informative annex. In keeping with this
precedent, this standard also refrains from addressing the SDF as an element of IDEF0 language
standardization.

The IDEF SDF is designed for use and presentation on conventional 8½-by-11-inch paper sheets.
Therefore, to preserve this conventional size, the figures for this document have been collected at the end
of the document rather than being interspersed with the text.

At the time this standard was completed, the IDEF0 Working Group had the following membership:

Howard McQueary, Chair

Alexander Bocast James Fulton Chistopher Menzel
Neva Carlson David Hess Michael Painter
Walter “Tom” Cottrell Bijan Izadi Bruce Rosen
Clarence Feldman Mary Laamanen Douglas T. Ross

Barney Leifeste

Christopher Menzel and James Fulton are the principal authors of the Annex B. Substantial input and
advice for the language formalization effort were provided by Richard Mayer.

The following persons were on the balloting committee:

H. Ronald Berlack Marilyn Ginsberg-Finner Kenneth R. Ptack
Richard E. Biehl Julio Gonzalez-Sanz Ann E. Reedy
Juris Borzovs John Harauz Dennis Rilling
Patricia E. Brett William Hefley Patricia Rodriguez
Kathleen L. Briggs Fabrizio Imelio Andrew P. Sage
M. Scott Buck Frank V. Jorgensen Helmut Sandmayr
Keith Chan Vladan V. Jovanovic Luca Spotorno
Betty P. Chao Ron S. Kenett Norma Stopyra
Antonio M. Cicu Dwayne L. Knirk Fred J. Strauss
François Coallier Thomas M. Kurihara Richard H. Thayer
Virgil Lee Cooper John B. Lane Booker Thomas
Geoff Cozens James J. Longbucco Patricia Trellue
Geoffrey Darnton Dieter Look Leonard L. Tripp
Perry R. DeWeese John Lord Mark-Rene Uchida
Evelyn S. Dow Tomoo Matsubara Theodore J. Urbanowicz
Charles Droz Alan Miller Glenn D. Venables
Sherman Eagles James W. Moore Charles J. Wertz
Richard L. Evans Pavol Navrat Scott A. Whitmire
Jonathan H. Fairclough Myrna L. Olson P. A. Wolfgang
John W. Fendrich Gerald L. Ourada Paul R. Work
Jay Forster Peter T. Poon Weider D. Yu

When the IEEE-SA Standards Board approved this standard on 25 June 1998, it had the following
membership:

Copyright © 1998 IEEE. All rights reserved. vii

Richard J. Holleman, Chair Donald N. Heirman, Vice Chair
Judith Gorman, Secretary

Satish K. Aggarwal James H. Gurney L. Bruce McClung
Clyde R. Camp Jim D. Isaak Louis-François Pau
James T. Carlo Lowell G. Johnson Ronald C. Petersen
Gary R. Engmann Robert Kennelly Gerald H. Peterson
Harold E. Epstein E. G. “Al” Kiener John B. Posey
Jay Forster* Joseph L. Koepfinger* Gary S. Robinson
Thomas F. Garrity Stephen R. Lambert Hans E. Weinrich
Ruben D. Garzon Jim Logothetis Donald W. Zipse

Donald C. Loughry

*Member Emeritus

Copyright © 1998 IEEE. All rights reserved.
viii

Contents

1. Overview...1
1.1 Scope..1
1.2 Purpose...1

2. Definitions, acronyms, and abbreviations ..2
2.1 Definitions..2
2.2 Acronyms and abbreviations ...8

3. References...9

4. IDEF0 models ...9

5. IDEF0 syntax ..9
5.1 Boxes..10
5.2 Arrows and arrow segments..10
5.3 Names and labels..10
5.4 Basic box/arrow syntax ...12
5.5 Call arrows ...12

6. IDEF0 semantics ...13
6.1 Box/arrow semantics...13
6.2 Branching and joining arrows...15
6.3 Arrow meaning conventions ...17
6.4 Ambiguous arrow segments ..18
6.5 Ambiguous arrow attachments..18
6.6 Arrow role conventions...19
6.7 Activations ...19
6.8 Concurrent activation ...19

7. IDEF0 diagrams..20
7.1 Diagram identification..20
7.2 A-0 context diagram...20
7.3 Model name..21
7.4 Model viewpoint...21
7.5 Model purpose ..22
7.6 Optional context diagrams ..22
7.7 Decomposition diagrams...24
7.8 Parent/child diagram relations ..24

8. IDEF0 model pages...25
8.1 Diagram pages..25
8.2 Text pages ..25
8.3 Glossary pages..25
8.4 FEO pages ..26
8.5 Other pages ..26

9. IDEF0 diagram features ..26
9.1 Boxes..26
9.2 Interbox connections...26
9.3 Boundary arrow segments...27
9.4 Tunneled arrows...28
9.5 Model notes ..30

10. IDEF0 reference expressions ...31
10.1 Box numbers...34
10.2 Node numbers...34

Copyright © 1998 IEEE. All rights reserved. ix

10.3 Diagram numbers ...35
10.4 Node tree ..36
10.5 Node index ...37
10.6 Diagram references...37
10.7 Page references ...37

11. IDEF0 diagram feature references ...37

Annex A (informative) Bibliography...42

Annex B (informative) IDEF0 language: abstract formalization ..43

Annex C (informative) Examples of IDEF0 usage and style ..54

Copyright © 1998 IEEE. All rights reserved. 1

IEEE Standard for Functional
Modeling Language—
Syntax and Semantics for IDEF0

1. Overview

This standard provides requirements for the construction of semantically and syntactically correct
Integration Definition 0 (IDEF0) models and diagrams. A model or diagram conforms to this standard if
it adheres to all mandatory provisions (marked by the verbs “shall” or “is”) of this standard.

Annex C of this document collects the figures that are referenced in the body of the standard and in
Annex B.

1.1 Scope

The body of the standard describes the modeling language (syntax and semantics) that supports the IDEF0
method for developing graphical representations of a system or subject area. The clauses that follow
govern the physical construction of IDEF0 models that represent functions, functional relationships, and
the physical and data objects required by those relationships.

This part of the document is divided into 10 clauses. Clause 1 provides an overview of this part of the
standard. Clause 2 defines key terms. Clause 3 discusses the concept of an IDEF0 model. Clause 4 defines
the syntax of the IDEF0 language. Clause 5 defines the semantics of the language. Clause 6 describes the
different types of IDEF0 diagrams. Clause 7 presents the different types of IDEF0 model pages. Clause 8
provides details on the various features of an IDEF0 diagram. Clause 9 defines IDEF0 reference
expressions. Finally, Clause 10 defines IDEF0 diagram feature references.

Documentation of best commercial practices and guides to recommended usage are beyond the scope of
this document.

1.2 Purpose

The objectives of this part of the standard are to prescribe the construction and components of an IDEF0
model and to define the correct syntax and semantics for construction of an IDEF0 diagram within an
IDEF0 model.

IEEE
Std 1320.1-1998 IEEE STANDARD FOR FUNCTIONAL MODELING

Copyright © 1998 IEEE. All rights reserved.2

2. Definitions, acronyms, and abbreviations

This clause contains definitions of important IDEF0 terms used in this standard. Terms used in a
definition that are defined elsewhere in this clause are italicized.

2.1 Definitions

2.1.1 A-0 context diagram: The only context diagram that is a required for a valid IDEF0 model, the A-
0 diagram contains one box, which represents the top-level function being modeled, the inputs, controls,
outputs, and mechanisms attached to this box, the full model name, the model name abbreviation, the
model’s purpose statement, and the model’s viewpoint statement.

2.1.2 A-0 diagram: See: A-0 context diagram.

2.1.3 activation: One occurrence of a function’s transformation of some subset of its inputs into some
subset of its outputs.

2.1.4 activation constraint: A function’s requirement for the presence of a nonempty object set in a
particular arrow role as a precondition for some activation of the function.

2.1.5 activity: See: function.

2.1.6 ancestral box: A box related to a specific diagram by a hierarchically consecutive sequence of one
or more parent/child relationships.

2.1.7 ancestral diagram: A diagram that contains an ancestral box.

2.1.8 arrow: A directed line, composed of one or more connected arrow segments in a single diagram
from a single source (box or diagram boundary) to a single use (box or diagram boundary). See also:
arrow segment, boundary arrow, internal arrow.

2.1.9 arrow label: A noun or noun phrase associated with an arrow segment to signify the arrow
meaning of the arrow segment. Specifically, an arrow label identifies the object type set that is represented
by an arrow segment.

2.1.10 arrow meaning: The object types (e.g., a physical thing, a data element) of an object type set,
regardless of how these object types may be collected, aggregated, grouped, bundled, or otherwise joined
within the object type set.

2.1.11 arrow reference: See: ICOM code.

2.1.12 arrow role: The relationship between an object type set represented by an arrow segment and the
activity represented by the box to which the arrow segment is attached. There are four arrow roles: input,
control, output, and mechanism.

2.1.13 arrow segment: A directed line that originates at a box side, arrow junction (branch or join), or
diagram boundary and terminates at the next box side, arrow junction (branch or join), or diagram
boundary that occurs in the path of the line.

2.1.14 boundary arrow: An arrow with one end (source or use) not connected to any box in a diagram.
Contrast: internal arrow.

IEEE
SYNTAX AND SEMANTICS FOR IDEF0 Std 1320.1-1998

Copyright © 1998 IEEE. All rights reserved. 3

2.1.15 boundary ICOM code: An ICOM code that maps an untunneled boundary arrow in a child
diagram to an arrow attached to the parent box that is detailed by that diagram.

2.1.16 box: A rectangle containing a box name, a box number, and possibly a box detail reference and
representing a function in a diagram.

2.1.17 box detail reference: A square enclosure encompassing a box number, which indicates that the
box is decomposed or detailed by a child diagram.

2.1.18 box ICOM code: An ICOM code that maps a tunneled boundary arrow to an arrow attached to
some ancestral box.

2.1.19 box name: The verb or verb phrase placed inside a box that names the modeled function. A box
takes as its box name the function name of the function represented by the box. See: function name.

2.1.20 box number: A single digit (0, 1, 2, …, 9) placed in the lower right corner of a box to uniquely
identify that box in a diagram. The only box that may be numbered 0 is the box that represents the A0
function in A-0 and A-1 context diagrams.

2.1.21 branch: A junction at which a root arrow segment (going from source to use) divides into two or
more arrow segments. May denote unbundling of arrow meaning, i.e., the separation of object types from
an object type set. Also refers to an arrow segment into which a root arrow segment has been divided.

2.1.22 bundle: (A) (As a verb) To combine separate arrow meanings into a composite arrow meaning,
expressed by joining arrow segments, i.e., the inclusion of multiple object types into an object type set.
(B) (As a noun) An arrow segment that collects multiple meanings into a single construct or abstraction,
i.e., an arrow segment that represents an object type set that includes more than one object type.

2.1.23 call arrow: An arrow that enables the sharing of detail between IDEF0 models (linking them
together) or within an IDEF0 model. The tail of a call arrow is attached to the bottom side of a box. One
or more page references are attached to a call arrow.

2.1.24 call reference: A page reference attached to a call arrow.

2.1.25 called diagram: A decomposition diagram invoked by a calling box and identified by a page
reference attached to a call arrow.

2.1.26 calling box: A box that is detailed by a decomposition diagram that is not the box’s child
diagram. A call arrow is attached to the bottom of a calling box.

2.1.27 child box: A box in a child diagram.

2.1.28 child diagram: A decomposition diagram related to a specific box by exactly one child/parent
relationship.

2.1.29 complete ICOM code: A diagram feature reference in which dot notation joins an ICOM code to
a diagram reference.

2.1.30 context: The immediate environment in which a function (or set of functions in a diagram)
operates.

2.1.31 context diagram: A diagram that presents the context of the top-level function of an IDEF0
model, whose diagram number is A-n, where 0##n##9. The one-box A-0 context diagram is a required
context diagram; those with diagram numbers A-1, A-2, …, A-9 are optional context diagrams.

IEEE
Std 1320.1-1998 IEEE STANDARD FOR FUNCTIONAL MODELING

Copyright © 1998 IEEE. All rights reserved.4

2.1.32 control: In an IDEF0 model, a condition or set of conditions required for a function to produce
correct output.

2.1.33 control arrow: An arrow or arrow segment that expresses IDEF0 control, i.e., an object type set
whose instances establish a condition or set of conditions required for a function to produce correct output.
The arrowhead of a control arrow is attached to the top side of a box.

2.1.34 control loopback: Loopback of output from one function to be control for another function in the
same diagram. Syn: feedback.

2.1.35 decomposition: The partitioning of a modeled function into its component functions.

2.1.36 decomposition diagram: A diagram that details its parent box.

2.1.37 descendent box: A box in a descendent diagram.

2.1.38 descendent diagram: A decomposition diagram related to a specific box by a hierarchically
consecutive sequence of one or more child/parent relationships.

2.1.39 diagram: An instantiation of the formal diagram structure as defined by Annex B that consists
only of semantically and syntactically valid IDEF0 graphical statements. Each diagram is a single unit of
an IDEF0 model that presents the top-level function that is the subject of the model (the A-0 context
diagram), presents the context of the subject function (other context diagrams), or presents the details of a
box (decomposition diagrams).

2.1.40 diagram boundary: An edge of a diagram in a diagram page.

2.1.41 diagram feature: An element of a diagram. Diagram features include boxes, arrow segments,
arrow labels, ICOM codes, ICOM labels, model notes, and reader notes.

2.1.42 diagram feature reference: An expression that unambiguously identifies a diagram feature
within an IDEF0 model.

2.1.43 diagram number: That part of a diagram reference that corresponds to a diagram’s parent
function’s node number. The diagram number refers to the diagram that details or decomposes the
function designated by the same node number.

2.1.44 diagram page: A model page that contains a context diagram or a decomposition diagram.

2.1.45 diagram reference: An expression that unambiguously identifies a diagram and specifies the
diagram’s position in a specific model hierarchy; a diagram reference is composed of a model name
abbreviation and a diagram number.

2.1.46 diagram title: A verb or verb phrase that describes the overall function presented by a diagram;
the diagram title of a child diagram is the box name of its parent box.

2.1.47 dot notation: A technique for naming that joins the name of a parent class to the name of a
dependent class with the period character. For example, the diagram feature reference ABC/A31.3 uses
dot notation to join the page reference of the parent diagram ABC/A31 to the feature reference for box 3
in that diagram.

2.1.48 feature reference: An expression that unambiguously identifies a diagram feature in a diagram.

2.1.49 feedback: See: control loopback.

IEEE
SYNTAX AND SEMANTICS FOR IDEF0 Std 1320.1-1998

Copyright © 1998 IEEE. All rights reserved. 5

2.1.50 FEO page: See: For Exposition Only page.

2.1.51 For Exposition Only page: A model page that contains pictorial and graphical information (in
contrast to text) about a specific diagram. Unlike a diagram, the contents of a For Exposition Only page
(FEO page) need not comply with IDEF0 rules.

2.1.52 fork: See: branch.

2.1.53 function: A transformation of inputs to outputs, by means of some mechanisms, and subject to
certain controls, that is identified by a function name and modeled by a box. Syn: depending on the usage
of a model, activity, task, process, operation.

2.1.54 function name: An active verb or verb phrase that describes what is to be accomplished by a
function. A box takes as its box name the function name of the function represented by the box.

2.1.55 glossary: A set of definitions that includes arrow labels and box names used in an IDEF0 model.

2.1.56 glossary page: A model page that contains definitions for the arrow labels and box names in a
specific diagram.

2.1.57 hierarchically consecutive: An unbroken unidirectional traversal of all nodes between two
specified nodes in a tree. All nodes between the origin and destination nodes shall be visited during a
traversal. All traversals from any node to its adjacent node shall be made in the same direction, either
towards the root of the tree of towards the leaves of the tree. Typically, hierarchically consecutive is taken
to imply from ancestral node (closer to the root) to descendent node (closer to the leaves).

2.1.58 ICOM code: An expression in one diagram that unambiguously identifies an arrow segment in
another diagram. An ICOM code is used to associate a boundary arrow of a child diagram with an arrow
attached to an ancestral box. Syn: arrow reference.

2.1.59 ICOM label: An arrow label attached without a squiggle directly to the arrowhead of an output
boundary arrow or to the arrowtail of an input, control, or mechanism boundary arrow. An ICOM label
associates a boundary arrow of a child diagram with an arrow label of an arrow attached to an ancestral
box.

2.1.60 IDEF0 model: Abstractly, a hierarchical set of IDEF0 diagrams that depict, for a specific purpose
and from a specific viewpoint, the functions of a system or subject area, along with supporting glossary,
text, and For Exposition Only (FEO) information.

Concretely, a set of model pages that include at least an A-0 context diagram and an A0 decomposition
diagram, a glossary or specific glossary pages, one or more text pages to accompany each diagram, and
FEO pages and model pages of other types as needed.

2.1.61 identifier: Within an IDEF0 model, a model name, a box name, or an arrow label.

2.1.62 input: In an IDEF0 model, that which is transformed by a function into output.

2.1.63 input arrow: An arrow or arrow segment that expresses IDEF0 input, i.e., an object type set
whose instances are transformed by a function into output. The arrowhead of an input arrow is attached to
the left side of a box.

2.1.64 input loopback: Loopback of output from one function to be input for another function in the
same diagram.

IEEE
Std 1320.1-1998 IEEE STANDARD FOR FUNCTIONAL MODELING

Copyright © 1998 IEEE. All rights reserved.6

2.1.65 internal arrow: An arrow connected at both ends (source and use) to a box in a diagram.
Contrast: boundary arrow.

2.1.66 join: A junction at which an arrow segment (going from source to use) merges with one or more
other arrow segments to form a root arrow segment. May denote bundling of arrow meanings, i.e., the
inclusion of multiple object types within an object type set.

2.1.67 junction: A point at which either a root arrow segment divides into branching arrow segments or
arrow segments join into a root arrow segment.

2.1.68 leaf diagram: A diagram that has no descendent diagrams, i.e., a diagram that does not contain
any function that has been decomposed.

2.1.69 leaf node: A function that is not decomposed. A box that represents a leaf node does not have a
box detail reference.

2.1.70 loopback: An internal arrow that is the output of a box whose box number is greater than the box
number of the box that uses that arrow as input, control, or mechanism. These uses are referred to as input
loopback, control loopback, and mechanism loopback, respectively.

2.1.71 mechanism: In an IDEF0 model, the means used by a function to transform input into output.

2.1.72 mechanism arrow: An arrow or arrow segment that expresses IDEF0 mechanism, i.e., an object
type set whose instances are used by a function to transform input into output. The arrowhead of an
mechanism arrow is attached to the bottom side of a box.

2.1.73 mechanism loopback: Loopback of output from one function to be mechanism for another
function in the same diagram.

2.1.74 model hierarchy: The diagrams that correspond to the nodes of the hierarchical graph structure
of an IDEF0 model.

2.1.75 model name: A unique, descriptive name that distinguishes one IDEF0 model from other IDEF0
models with which it may be associated. An IDEF0 model’s model name and model name abbreviation
are placed in the A-0 context diagram along with the model’s purpose statement and viewpoint statement.

2.1.76 model name abbreviation: A unique short form of a model name that is used to construct
diagram references.

2.1.77 model note: A textual and/or graphical component of a diagram that records a fact not otherwise
depicted by a diagram’s boxes and arrows.

2.1.78 model note number: An integer number, placed inside a small square, that unambiguously
identifies a model note in a specific diagram.

2.1.79 model page: A logical component of an IDEF0 model that can be presented on a single sheet of
paper. Model pages include diagram, text, FEO, and glossary pages.

2.1.80 node: A modeled function located within the hierarchical graph structure of an IDEF0 model by
its designated node number; as a function, a node is represented in a diagram by a named box.

2.1.81 node index: A text listing, often indented, of the nodes in an IDEF0 model, shown in outline
order. Same meaning and node content as a node tree.

IEEE
SYNTAX AND SEMANTICS FOR IDEF0 Std 1320.1-1998

Copyright © 1998 IEEE. All rights reserved. 7

2.1.82 node letter: The letter that is the first character of a node number.

2.1.83 node number: An expression that unambiguously identifies a function’s position in a model
hierarchy. A node number is constructed by concatenating a node letter, the diagram number of the
diagram that contains the box that represents the function, and the box number of that box.

2.1.84 node tree: A graphical listing of the nodes of an IDEF0 model, showing parent-child
relationships as a graphical tree. Same meaning and node content as a node index.

2.1.85 object: A member of an object set and an instance of an object type. An object represents
something in the observable world that may be distinguished from other instances of its object type and
may be uniquely identified.

2.1.86 object set: A subset of instantiations from the set of all possible instantiations of all object types
within an object type set. An object set is a subset of the union of the members of an object type set; the
set of object sets includes the empty set and the set of the union of the members of the object type set
itself. An object set is modeled by an arrow segment.

2.1.87 object type: The set of all possible instantiations of a singular concept, either physical or data,
within an IDEF0 model. An IDEF0 object type is generally analogous to an IDEF1X entity or an IDEF1
entity class.

2.1.88 object type set: A named set of one or more object types. An object type set may include object
types that are themselves grouped as object type sets. An object type set is designated by an arrow label.

2.1.89 output: In an IDEF0 model, that which is produced by a function.

2.1.90 output arrow: An arrow or arrow segment that expresses IDEF0 output, i.e., an object type set
whose instances are created by a function by transforming the function’s input. The arrowtail of an output
arrow is attached to the right side of a box.

2.1.91 page reference: An expression that unambiguously identifies a model page. The page reference
incorporates a diagram reference to the associated diagram, the type of page, and any sequencing data
needed to distinguish different pages of the same type that are associated with the same diagram.

2.1.92 page type letter: The uppercase letter in a page reference that denotes a specific type of model
page.

2.1.93 parent box: An ancestral box related to its child diagram by exactly one parent/child
relationship, that is, a box detailed by a child diagram. The existence of this child diagram is indicated by
a box detail reference.

2.1.94 parent diagram: A diagram that contains a parent box.

2.1.95 parent function: A function modeled by a parent box.

2.1.96 purpose statement: A brief statement of the reason for an IDEF0 model’s existence that is
presented in the A-0 context diagram of the model.

2.1.97 reader note: A comment made by a reader about an diagram and placed on the diagram page. A
reader note is not part of the diagram itself, but rather is used for communication about a diagram during
model development.

IEEE
Std 1320.1-1998 IEEE STANDARD FOR FUNCTIONAL MODELING

Copyright © 1998 IEEE. All rights reserved.8

2.1.98 reference expression: An expression that uniquely identifies a box, a node or function, a
diagram, or a model page within an IDEF0 model.

2.1.99 root arrow segment: The arrow segment of a junction from which other arrow segments branch
or to which other arrow segments join. Syn: root or root segment.

2.1.100 root segment: See: root arrow segment.

2.1.101 squiggle: A short “s”-shaped line attached at one end to an arrow label and at the other end to
an arrow segment. A squiggles binds an object type set (arrow label) to an object set (arrow segment).

2.1.102 text page: A model page that contains textual material related to a specific diagram.

2.1.103 top box: The box in the A-0 context diagram that models the top-level function of an IDEF0
model.

2.1.104 top-level function: The function modeled by the single box in the A-0 context diagram of an
IDEF0 model.

2.1.105 tunneled arrow: An arrow left undrawn between its attachment to an ancestral box and its
appearance as a boundary arrow on some hierarchically consecutive descendent diagram.

2.1.106 tunneling: The act of applying tunnel notation to an arrow segment.

2.1.107 tunnel notation: A pair of short shallow arcs, resembling a pair of left and right parentheses
characters, that bracket the arrowhead or the arrowtail of an arrow segment.

2.1.108 unbundle: The separation of arrow meanings, expressed by branching arrow segments, i.e., the
separation of object types from an object type set.

2.1.109 viewpoint statement: A brief statement of the perspective of an IDEF0 model that is presented
in the A-0 context diagram of the model.

2.2 Acronyms and abbreviations

These short forms of words, names, and expressions are used in this document with the following
meanings:

DRE detail reference expression

ER Entity relationship

FEO For Exposition Only

ICOM Input, control, output, and mechanism

IDEF Integration Definition or ICAM Definition Language

IDEF0 IDEF for function modeling

IDEF1X IDEF for data modeling

iff if and only if

KIF Knowledge interchange format

SDF IDEF standard diagram form

IEEE
SYNTAX AND SEMANTICS FOR IDEF0 Std 1320.1-1998

Copyright © 1998 IEEE. All rights reserved. 9

3. References

No normative references are required for use with this standard. A bibliography of documents referenced
in the body of the standard is provided in Annex A.

4. IDEF0 models

This clause and the clauses that follow identify the basic components of IDEF0 syntax (the drawn, visual
elements of the language and how they may be used together) and IDEF0 semantics (what it means when
the visual elements are used together in specific, allowable ways), specify the rules that govern the use of
these modeling components, and describe the types of diagrams used in an IDEF0 model. Although the
components of syntax and semantics are very highly interrelated, they are discussed separately without
regard for the actual sequence of construction.

An IDEF0 model is a representation of a set of components of a system or subject area. Systems modeled
by IDEF0 techniques are composed of interdependent parts that work together to perform an intended
function. The system components represented in an IDEF0 model can be any combination of things,
including people, information, software, functions, equipment, products, and raw materials. The IDEF0
model reflects how system functions interrelate and operate just as the blueprint of a product reflects how
the different pieces of the product fit together.

An IDEF0 model describes what a system does, what controls it, what things it works on, what means it
uses to perform its functions, and what it produces. An IDEF0 model is composed of a hierarchical series
of diagrams with associated explanatory material that gradually introduce increasing levels of detail to
describe functions and their interfaces within the context of a system.

An IDEF0 model contains four primary types of model pages: diagram, text, For Exposition Only (FEO),
and glossary. Diagram pages contain diagrams that define functions and functional relationships in
accordance with IDEF0 box and arrow syntax and semantics. Text, FEO, and glossary pages provide
additional information in support of these diagrams. This structure provides the reader with a well-
bounded topic with a manageable amount of detail to learn from a single diagram and with manageable
amounts of supplementary information to learn from each of the diagram’s supporting pages.

Concretely, an IDEF0 model shall contain a set of model pages that includes diagram pages that present at
least the model’s A-0 context diagram and its A0 decomposition diagram, one or more glossary pages for
each diagram page, and one or more text pages for each diagram page. A glossary for the entire model
may be used in lieu of individual glossary pages. FEO pages and model pages of other types defined for a
particular modeling project may be included as needed.

5. IDEF0 syntax

This clause defines the visual aspects of boxes and their semantic interpretation as functions; the visual
aspects of arrows and their semantic interpretation as objects, including data objects; and the visual
aspects of attaching arrows to boxes and the semantic interpretation of these attachments as functional
interrelationships.

The basic components of a language (i.e., the lexicon) and the rules that define how those basic
components can be combined to form more complex syntactic structures (i.e., the grammar) together
constitute the syntax of the language. The basic components of IDEF0 syntax are boxes and arrow
segments.

IEEE
Std 1320.1-1998 IEEE STANDARD FOR FUNCTIONAL MODELING

Copyright © 1998 IEEE. All rights reserved.10

5.1 Boxes

Boxes are the verbs of IDEF0 syntax: a box models a function in an IDEF0 model. A box shall be a
rectangle with square corners. A box shall have a box name that is fully contained within its boundaries.
The box name shall be an active verb or verb phrase that describes what must be accomplished by the
function represented by the box. A box shall also contain a box number in its lower right corner. If a box
has been detailed by a decomposition diagram, the box number shall be framed by an enclosed corner; this
framing of a box number to indicate decomposition is known as a box detail reference1. A typical
decomposed box is shown in Figure 1.

5.2 Arrows and arrow segments

Arrows are the nouns of IDEF0 syntax: an arrow models physical and data objects in an IDEF0 model.
(The meaning of an arrow segment is further clarified in Clause 6.) An arrow is composed of one or more
directed line segments, known as arrow segments, with a terminal arrowhead at one end of the arrow. As
shown in Figures 2 through 5, an arrow segment shall be drawn as one or more straight horizontal and
vertical line segments; an arrow may not be drawn diagonally. Horizontal and vertical line segments of an
arrow segment shall be connected by a curved line segment with a 90° arc. Arrows may have branching
and joining configurations.

An arrow is a linear configuration, in the sense that every two distinct arrow segments in an arrow are
linked by some finite number of arrow segments. Thus, in Figure 5, the arrow I2:2I2 is composed of the
arrow segments labeled Untrained Staff and Untrained Fitters and the arrow segments Trained Hefters
and Trained Staff constitute the distinct arrow 3O1:O2.

An arrow label consists of a single noun or noun phrase that designates the object type set of an arrow
segment, that is, the physical and data objects represented by the arrow segment. Every arrow segment
shall be labeled with an arrow label unless a single arrow label clearly applies to the arrow as a whole.
Call arrows shall be labeled with one or more call references. A squiggle shall be used to link an arrow
segment to its associated arrow label, unless a relationship between a label and a specific arrow segment is
visually obvious. An arrow label that identifies a boundary arrow segment is attached to the arrowhead of
an output boundary arrow or to the arrowtail of an input, control, or mechanism boundary arrow; such an
arrow label is known as an ICOM label. Because the arrowhead or arrowtail of a boundary arrow is
directly attached to the arrow label, the relationship between this label and the boundary arrow segment is
always visually obvious and thus shall be drawn without a squiggle.

5.3 Names and labels

An IDEF0 model is identified by a model name, an IDEF0 box is identified by a box name, and an IDEF0
arrow segment is identified by an arrow label. These identifiers shall contain only alphanumeric
characters, i.e., the letters (“A” through “Z” and “a” through “z”), the digits (“0” through “9”), the space
character (“ ”), and the hyphen character (“-”, as in “well-defined”). Punctuation marks and other special
characters shall not appear in identifiers. The only exceptions to this prohibition are characters required to
represent a proper name such as the citation of a specific reference (e.g., Roberts’ Rules of Order, DoD
8320.1-M-1).

An identifier shall be written in title case, i.e., the first letter of each word shall be capitalized. The
individual words of an identifier shall be separated by a single space; other characters (e.g., underscore
(“_”), hyphen) shall not connect the words of an identifier to form a single token.

1A box detail reference may be associated with a detail reference expression (DRE) during the process of developing an IDEF0 model. A
correct IDEF0 model does not require DREs.

IEEE
SYNTAX AND SEMANTICS FOR IDEF0 Std 1320.1-1998

Copyright © 1998 IEEE. All rights reserved. 11

Abbreviations shall not appear in an identifier. Prepositions (e.g., for, to, from), conjunctives (e.g., and,
or), and articles (e.g., the, an) shall not appear in an identifier, unless such a word is an essential element
of a term of art customarily used by a model’s intended audience and the term of art is separately defined
in the model’s glossary.

An identifier

 Shall express a singular concept (hence the prohibition of conjunctives)

 Shall express the nature of the model component it identifies

 May not express a relationship between a model component and any other component(s) of a model
(hence the prohibition of prepositions)

 May not refer to a specific instance of an object type or to a particular activation of a function
(hence the prohibition of articles)

No identifiers for different arrows or boxes shall be identical.

(In the special case, limited to control and mechanism arrows that do not change roles, and where the
object type set designated by an arrow label contain only one object type, and where the set of
instantiations of the object type contains only one possible instance, and thus where the set of object sets
consists only of the empty set and a set containing just this one instance, only one particular object can be
instantiated from the object set, the object type, and the object type set. In this case, the name of the object
type set is equivalent to the name of the instantiated object. Nonetheless, the arrow label still identifies the
object type set represented by the arrow segment, not the single instance of the object set modeled by the
arrow segment.)

a) Names for boxes. A box name shall identify the transformation represented by a box, i.e., the
modeled function. A box name shall be an active verb or verb phrase such as

 Order Parts

 Monitor Performance

 Develop Detail Design

 Plan Resources

 Design System

 Fabricate Component

A box name shall not contain any of these words: function, activity, or process.

b) Labels for arrows. An arrow label or ICOM label shall identify the object type set of an arrow
segment. An arrow segment shall be labeled with a noun or noun phrase such as

 Specifications

 Performance Requirements

 Software Engineer

 Summary Report

 Architectural Design

 Board Assembly

An arrow label shall not consist solely of any of these words: input, control, output, mechanism,
call, object, or data.

IEEE
Std 1320.1-1998 IEEE STANDARD FOR FUNCTIONAL MODELING

Copyright © 1998 IEEE. All rights reserved.12

Figure 6 illustrates the placement of arrow labels and box names.

5.4 Basic box/arrow syntax

More complex IDEF0 syntactic structures are formed by connecting boxes with arrows in various ways.
Relative to a given box in a more complex diagram structure, there are five ways that an arrow may be
attached to a box in an IDEF0 diagram. An arrow may be attached by its arrowhead to the top, to the
bottom, or to the left side of a box. An arrow may be attached by its arrowtail to the bottom or to the right
side of a box.

An arrow attached by its arrowhead to the left side of a box is called an input arrow. An arrow attached by
its arrowhead to the top side of a box is called a control arrow. An arrow attached by its arrowhead to the
bottom side of a box is called a mechanism arrow. An arrow attached by its arrowtail to the right side of a
box is called an output arrow. An arrow attached by its arrowtail to the bottom side of a box is called a
call arrow. These are the only valid ways to attach an IDEF0 arrow to an IDEF0 box. This basic
box/arrow syntax is illustrated in Figures 7 through 9.

At least one control arrow and at least one output arrow shall be attached to a box. One or more input
arrows and one or more mechanism arrows may be attached to a box. Only one call arrow may be attached
to a box.

5.5 Call arrows

An important syntactic convention is the call arrow. Call arrows do not play a specific semantic role in an
IDEF0 diagram; hence, they do not appear in Annex B. Rather, a call arrow allows a calling box to be
detailed (i.e., an activity to be decomposed) by a diagram that is not an immediate child diagram of the
calling box. A called diagram is a decomposition diagram that details a calling box. A calling box is said
to invoke a called diagram. In other words, the details of an activity represented by a calling box are
specified in a called diagram that is the immediate child of some other activity within the same model or
possibly in another model entirely. A call reference is a page reference provided by a call arrow that
identifies such a called diagram for a calling box.

a) Model integration. The call arrow convention allows the logical integration of models containing
hierarchically related functions without requiring their integration into a single physical model. A
call reference to a diagram in another model effectively links the model that contains the calling
box to the model that contains the called diagram. For example, a call reference might link a box
in a high-level context diagram of one model to the A0 diagram of another model to treat the
subject matter of the linked activity.

b) Shared detail. Because more than one calling box may invoke the same called diagram via a call
reference, the call arrow convention allows

 Distinct functions with similar topologies to be modeled by a single generalized
decomposition or

 The same function to be identified in different places within the same model but to be only
detailed in one place in the model’s decomposition hierarchy

This approach allows the sharing of decomposition detail by activities represented in different
models and/or by activities within the same model. For example, the activities A323 Invite General
Specifications Committee and A5332 Invite Detail Specifications Committee might both be
detailed by diagram A5332. A call arrow with the call reference A5332 might be attached to box 3
in diagram A32.

c) Alternate activations. Because a single calling box may invoke more than one called diagram via
call references, the call arrow convention allows a set of detail diagrams to represent each different
activation of a calling box. Each possible activation may be detailed by a called diagram that has

IEEE
SYNTAX AND SEMANTICS FOR IDEF0 Std 1320.1-1998

Copyright © 1998 IEEE. All rights reserved. 13

been prepared specifically to detail the activity under that particular activation, which may have
been created in a different model or which details some activity elsewhere in the same model.

d) Alternate representations. Similarly, because a single calling box may invoke more than one called
diagram via call references, the call arrow convention allows one function to be modeled by a set of
alternative or variant detail diagrams. Each of these alternative decompositions may be represented
by a diagram in a different model or by a detail diagram elsewhere in the same model.

A call arrow is a straight, single-segment arrow whose tail is attached to the bottom side of a calling box.
Only one call arrow may be attached to a calling box. A call arrow is attached to the right of any
mechanism arrows; mechanism arrows are always attached to the bottom side of a calling box to the left of
any call arrow.

A call reference is a page reference that is attached to a call arrow to identify a called diagram that may be
invoked by the calling box. Unlike arrow labels, a call reference may not be attached to the call arrow by a
squiggle. A call reference shall be placed immediately above the back of the call arrow’s arrowhead and
immediately to the right of the call arrow segment, as shown in Figure 6.

More than one call reference may be attached to one call arrow. Should there be more than one call
reference, the call references shall be left-justified within a vertical list. The last or bottom call reference
in such a list shall be shown in exactly the same position relative to a call arrow’s arrowhead as a single
call reference. The order of call references in such a list has no significance. A calling box may not have a
box detail reference because a calling box is not detailed by its own child diagram. A call reference may
not be made to any kind of context diagram because a called diagram must be a decomposition diagram.
For example, a calling box in a high-level context diagram for one model may incorporate another whole
model only by invoking that model’s A0 diagram, which is the highest decomposition diagram in any
IDEF0 model.

Different calling boxes may invoke the same called diagram and different called diagrams may be invoked
by the same calling box. However, a calling box may invoke only one called diagram in any given
activation of the calling box. Which activation conditions determine which called diagram is to be
invoked by a calling box shall be specified in an accompanying model note. This note may refer the reader
to a text page by a page reference for a complete explanation.

The boundary arrows of a called diagram need not correspond exactly with those of the calling box, either
in number, name, or meaning. In these cases, a model note in the diagram containing the calling box shall
specify these relationships so that a reader may appropriately interpret the shared physical and data
objects required for an activation of the called diagram. This note may refer the reader to a text page by a
page reference for a complete explanation.

6. IDEF0 semantics

Semantics involves, first, the interpretation of the basic syntactic components of a language and, second,
how the interpretations of those basic components contribute to the meanings of more complex syntactic
structures. Thus, a semantics for IDEF0 specifies how the boxes and arrows are to be interpreted and, in
turn, how they contribute to the meanings of more complex structures built up from them.

6.1 Box/arrow semantics

a) Box semantics. A box models a function, i.e., an activity that, typically, takes certain inputs and, by
means of some mechanism, and subject to certain controls, transforms its input into output. Thus, a
function name shall be an active verb or verb phrase, such as “Inspect Parts,” that describes what is
accomplished by the function that the box represents. The name of a box is the name of the
function represented by the box. Thus, for instance, a function named “Inspect Parts” would be

IEEE
Std 1320.1-1998 IEEE STANDARD FOR FUNCTIONAL MODELING

Copyright © 1998 IEEE. All rights reserved.14

expected to transform uninspected parts into inspected parts, and the name of the box representing
this function would also be “Inspect Parts.”

An IDEF0 transformation may consist of any combination of these four kinds of transform: form,
state, time, and place.

1) A transformation of form substantively changes input objects into different output objects.

2) A transformation of state changes some characteristic(s) of input objects to produce the output
objects. IDEF0 modeling treats something in one state before an IDEF0 transformation and the
same thing in another state after the transformation as distinctly different objects.

3) A transformation of time changes the temporal location of input objects, i.e., moves input
objects at one point in time to be output objects at another point in time, without necessarily
changing their form or state. A transformation of time is the IDEF0 expression of storage.

4) A transformation of place changes the spatial location of input objects, i.e., moves input
objects at one location to be output objects at another location, without necessarily changing
their form or state. A transformation of place is the IDEF0 expression of movement or flow.

b) Output without input. An IDEF0 function must be provided control and must provide output. Input
is not required for a syntactically correct statement of an IDEF0 activity (see 5.4). From the
particular viewpoint and for the specific purpose of a given model, IDEF0 input for an activity may
be omitted if all inputs meet one or more of these criteria:

1) Control-bundled input. An input is bundled with a control (see 6.6).

2) Nonobject input. An input is not a physical or data object. Not everything that is real can be
modeled as an IDEF0 object. Real things such as emotions, knowledge, political power, and
planetary orbits exist but cannot be represented by IDEF0 arrows.

3) Nonconstraint input. An input is always available to a function in all circumstances relevant to
a given model. Such input—a precondition assumed always to be true—does not constrain the
function.

4) Creative act. The function itself represents a creative act, a transformation that essentially
creates something from nothing. As creative acts, functions such as Write Program and
Compose Sonata are typically modeled as activities whose outputs are created without
transformation of IDEF0 input.

c) Arrow semantics. At some level of abstraction, an IDEF0 arrow models physical and data objects
that may exist in the tangible world and an arrow label identifies the kinds of objects that are
represented by an arrow. However, because IDEF0 arrow segments may branch and join to
commingle arrow meaning in arbitrary ways, distinctions among object type sets, object types,
object sets, and objects themselves are necessary to allow an arrow segment to express the absence
as well as the presence of objects and to allow consistent interpretation of branches and joins (see
6.2).

1) An object type set is a named set of one or more object types. An object type set may include
object types that are themselves grouped as object type sets. An object type set is designated by
an arrow label.

2) An object type is the set of all possible instantiations of a singular concept, either physical or
data, within an IDEF0 model.

3) An object set is a subset of instantiations from the set of all possible instantiations of all object
types within a named object type set. An object set is a subset of the union of the members of
an object type set; the set of object sets includes the null or empty set and the set of the union
of the members of the object type set. An object set is modeled by an arrow segment. Object
sets are not explicitly named in IDEF0 syntax.

IEEE
SYNTAX AND SEMANTICS FOR IDEF0 Std 1320.1-1998

Copyright © 1998 IEEE. All rights reserved. 15

4) An object is one instantiation of an object type, that is, a member of an object set. A physical
or data object represents something in the observable world that may be distinguished from
other instances of its object type and may be uniquely named. However, an object is not
explicitly named in IDEF0 syntax.

Each arrow segment shall be identified by the object type set of the object set modeled by the arrow
segment. Generally, however, the terms “an arrow represents an object type set” or “an arrow
represents physical and data objects” are used to express the relationship between an object type
set, which is designated by an arrow label, and an object set, which is modeled by an arrow
segment.

d) Box/arrow attachments. An arrow segment that is attached to a box represents an object type set in
a specific role—input, control, mechanism, or output—for the function that the box represents. The
side of a box to which an arrow is attached defines the role of an object type set with respect to the
function represented by that box. (As noted in 5.5, call arrows play no semantic role but are merely
pointers to diagram pages that may detail the calling box.)

1) Input. An arrow attached to the left side of a box represents input for the function. Such an
input arrow represents what is transformed or consumed by the function to produce the
function’s output.

2) Control. An arrow attached to the top of a box represents control for the function. Such a
control arrow represents conditions that must be met before the function can produce correct
output.

3) Output. An arrow attached to the right side of a box represents output from the function. Such
an output arrow represents what is produced by the function.

4) Mechanism. An arrow attached to the bottom of a box represents mechanism for the function.
Such a mechanism arrow represents the means that carry out the function.

Input to an activity, i.e., an object set modeled by an arrow segment attached to the left side of a
box, must be transformed by some activation of the function into some output of the activity, i.e., a
different object set modeled by an arrow segment attached to the right side of that box. Output may
result from transformation of inputs specified for an activity; output must account for all input and
all input must be accounted for by output. Neither control nor mechanism may be transformed by a
function. Thus, all input, control, output, and mechanism arrows represent object type sets, but
only a control or mechanism arrow may represent an object type set that contains only one possible
instantiation.

Arrows do not represent temporal sequencing as in a traditional process or data flow model;
indeed, the concept of time cannot be formally expressed through IDEF0 syntax. Rather, arrows
represent object type sets. These object type sets are necessary to specify a transformation
represented by a box. The role that an object type set plays in this transformation is specified by
attaching the appropriately labeled arrow to the appropriate side of the box. That one box is
connected to another by an arrow simply specifies that the output of one function provides input,
control, or mechanism needed for the activation of the other function.

Standard arrow attachments are shown in Figure 6.

6.2 Branching and joining arrows

Three or more arrow segments may connect at one point to form a junction. Such a junction is either a
branch or a join. A branch splits one arrow segment, the root segment, into two or more arrow segments,
the branching segments. A join combines two or more arrow segments, the joining segments, into a single
arrow segment, their root segment. Branches and joins may be interpreted symmetrically with respect to
their root segments. In both kinds of junction, the meaning of the root arrow segment—that is, the object

IEEE
Std 1320.1-1998 IEEE STANDARD FOR FUNCTIONAL MODELING

Copyright © 1998 IEEE. All rights reserved.16

types represented by the root segment, without regard to how these object types may be grouped or
otherwise bundled as an object type set—shall correspond to the object type sets represented by the arrow
segments that connect to it.

Specifically, the meaning of the root segment of a join shall be equivalent to the union of the meanings of
all arrow segments that join it. The meaning of a root segment of a branch shall be equivalent to the union
of the meanings of all arrow segments that branch from it. The union of the meanings of all segments that
join a root segment shall be equivalent to the union of the meanings of all segments that branch from the
same root segment. Thus, additionally, the meaning of a root segment shall be equivalent to the union of
the meanings of all arrow segments that connect to it. In other words, the set of arrow segments that
connect in a junction to a root arrow segment must represent all of and nothing but the meaning of that
root arrow segment.

This conservation of meaning of object types through arrow branching and joining applies to the
composite meaning of a complete set of joining segments, the bundled meaning of their root segment, and
the composite meaning of a complete set of segments branching from that root. This conservation of
meaning of object types does not apply to the meaning of individual arrow segments that connect to a
junction as joining or branching segments. While a set of connecting arrow segments, branching or
joining, must represent all of and nothing but the meaning of the root segment of a junction, this
conservation of meaning does not require that different object types of a root’s meaning be apportioned
among the segments that connect to the root segment in any particular way. This conservation of meaning
does require each branching or joining arrow segment to represent a subset of the union of the members of
the object type set represented by the root arrow segment of a junction.2

In general, the object type set of any individual arrow segment that connects to a root segment at a
junction may contain any arbitrary combination of object types that are also contained within the meaning
of the root segment, regardless of the meaning of any other segments that may also connect to the same
root segment. However, two special cases frequently appear in IDEF0 models: fungible junctions and
abstract junctions. These variations are illustrated in Figure 10.

a) In a fungible junction, exactly the same object type set is represented by every arrow segment that
connects to the root segment. In this case, the separate meanings of the branching or joining
segments will be exactly the same as the meaning of the root segment of the junction; the meaning
of each connecting segment replicates the meaning of the root segment.

b) In an abstract junction, the meaning of the root segment is the set addition of the meanings of the
other connecting segments. In this case, the set addition equals the set union of the meanings of
the arrow segments that connect to a root segment in a junction. An abstract join bundles
differentiated groups of physical and data objects into a generalized or more abstract grouping
construct: the component parts, which are represented by joining arrow segments, are bundled into
the root arrow segment. Such bundling is also termed arrow aggregation. Conversely, an abstract
branch unbundles a generalized or more abstract grouping construct into differentiated or less
abstract object type sets: the root segment is unbundled into its component parts, which are
represented by branching arrow segments. Such unbundling is also termed arrow decomposition.

When a junction is abstract, either join or branch, the meanings of the segments that connect to the
root segment are disjoint, i.e., there is neither redundancy nor overlap of meaning among these
arrow segments. In particular, when an abstract branch unbundles a root segment formed by an
abstract join, the separate meanings of the branching segments will be the same as the separate
meanings of the root’s joining segments; in other words, the set of arrow labels identifying joining

2This conservation of meaning also determines that an arrow segment in an IDEF0 model may not represent anything that is not specified
as input, control, output, or mechanism for some function within the scope of the model and that the set of all arrow segments in an IDEF0
model must represent everything that is required as input, control, output, and mechanism for all functions within the scope of the model.

IEEE
SYNTAX AND SEMANTICS FOR IDEF0 Std 1320.1-1998

Copyright © 1998 IEEE. All rights reserved. 17

segments must be the same as the set of arrow labels identifying branching segments. Because an
arrow label specifies what an arrow segment represents by identifying an object type set, arrow
labels on branching (joining) arrow segments may detail the content of a root arrow segment just
as decomposition diagrams detail a parent box.

For example, given a root arrow segment that models apples, oranges, and mangoes as a bundle of
fruit, any set of arrow segments that join into fruit or any set of arrow segments that branch from
fruit must represent, in any combination, apples and oranges and mangoes; further, neither
bananas nor apricots may be represented by any segment joining to or branching from this
particular bundle of fruit.

An arrow segment by itself models an object set—a specific set of instantiations of the object types
identified by the label attached to the arrow segment. The IDEF0 box/arrow syntax models such an object
set in a specific role with respect to a given activity. In particular, any attachment of an arrow to a box as
an input, control, or mechanism expresses an activation constraint, that is, a requirement for the existence
of a nonempty object set in a particular role before a function can execute (see 6.7).

An arrow segment models an object set without enumerating or counting the members of the object set.
Just as time is not formally represented by an IDEF0 model, the idea of quantity also cannot be formally
represented through IDEF0 syntax. An arrow segment models objects in an object set without expressing
any quantitative meaning.

Rather, the attachment of an input, control, or mechanism arrow to a box denotes that the function cannot
activate unless sufficient instances of the arrow’s object types (that is, an object set) are available to the
function. What “sufficient” might mean is not determined in an IDEF0 model by characterizing an arrow.
Whatever “sufficient” might mean in a counting sense, “sufficient” is expressed in an IDEF0 model by the
structure of IDEF0 controls, which prevent activation of a function until sufficient resources of the
appropriate kinds are available and which stimulate activation of other functions until these sufficient
resources are produced.

Thus, in an IDEF0 model, objects are not quantified or counted; the significance of this absence of
quantity is that conservation of arrow meaning through junctions, i.e., through joins and roots and
branches, does not require or imply that an arrow segment represent any specific number of objects. While
IDEF0 box/arrow syntax can be used to specify, say, that apples, oranges, and mangoes are required to
activate a function, this syntax cannot be used to specify how many apples, how many oranges, or how
many mangoes are required. Thus, conservation of arrow meaning does not imply that the number of
objects represented by a set of segments branching from a root segment conserves the number of objects
represented by a corresponding set of segments joining that root.

6.3 Arrow meaning conventions

Because the meanings of arrow segments connected in a junction may be ambiguous, IDEF0 provides
several conventions to clarify these meanings. These conventions also minimize the number of arrow
labels that need be physically provided in a diagram. The conventions and their exceptions are illustrated
in Figures 12 through 21. The conventions are

a) The meaning of any boundary arrow, expressed by its ICOM label, may be propagated to all
unidentified connecting arrow segments, both joining and branching, unless this propagation is
halted by

1) A labeled segment (i.e., an arrow segment that is explicitly identified by an arrow label or an
ICOM label),

2) An ambiguous segment (i.e., one arrow segment that can be implicitly identified by different
arrow labels via label propagation along different arrows), or

IEEE
Std 1320.1-1998 IEEE STANDARD FOR FUNCTIONAL MODELING

Copyright © 1998 IEEE. All rights reserved.18

3) Ambiguous attachments (i.e., different arrow segments, all attached to the same box, that can
be implicitly identified by the same arrow label via label propagation along different arrows).

In particular, an ICOM label for an input, control, or mechanism boundary arrow may identify all
unidentified branching arrow segments, including subsequent arrow segments of that boundary
arrow and arrow segments that branch from it. In addition, an ICOM label for an output boundary
arrow may identify all unidentified joining arrow segments, including antecedent arrow segments
in that boundary arrow and arrow segments that join it.

b) After ICOM labels of boundary arrow segments have been propagated, the arrow labels attached to
other root arrow segments may be similarly propagated to branching arrow segments. The meaning
of such root arrow segments, expressed either explicitly by an arrow label or implicitly by
propagation of an ICOM label, may be propagated through all connected arrow segments, unless,
as with boundary arrow ICOM labels, such propagation is halted by a labeled segment, an
ambiguous segment, or ambiguous attachments.

Only ICOM labels and then arrow labels attached to the root segment of a branch may be propagated. In
particular, an explicit arrow label attached to an arrow segment formed by joining arrow segments may
not be propagated to those joining arrow segments. In contrast, if such a root segment may be implicitly
identified by propagation of an ICOM label, the implicit identity of the bundled root segment may
propagate to other, unidentified joining arrow segments.

6.4 Ambiguous arrow segments

The meaning of an arrow segment may propagate to another arrow segment only if it is the only meaning
that may be propagated to that arrow segment. An ambiguous arrow segment arises if the meaning of the
same arrow segment can be differently implied by the propagation of different labels along different
arrows. An ambiguous arrow segment shall be explicitly labeled and may not be implied. A label may
neither be propagated to nor through an ambiguous segment. In particular,

a) The meaning of an arrow segment may not propagate to an unidentified arrow segment that
connects two arrow segments by branching from one and joining to the other, whether labeled
explicitly or implicitly by propagation.

b) The meaning of an arrow segment may not propagate to an unidentified arrow segment that results
from the join of arrow segments that have different meanings. Similarly, the meaning of an arrow
segment may not propagate to an unidentified arrow segment that is the root of branching arrow
segments that have different meanings, whether labeled explicitly or implicitly by propagation.

6.5 Ambiguous arrow attachments

The meaning of an arrow segment may propagate to only one arrow segment attached to a given box.
Ambiguous arrow attachments arise if the meaning of an arrow segment can be propagated along different
arrows to multiple arrow segments attached to the same box. An arrow segment with an ambiguous arrow
attachment shall be explicitly labeled and may not be implied. A meaning may not be propagated to an
arrow segment with an ambiguous attachment. In particular,

a) The meaning of an arrow segment may not propagate to any output arrow segment attached to a
given box if that meaning can also propagate to any input, control, or mechanism arrow segment
attached to the same box. An arrow segment meaning may propagate to an output arrow segment if
and only if that arrow segment label cannot also propagate to any input, control, or mechanism
arrow segment attached to the same box.

b) The meaning of an arrow segment may not propagate to any output arrow segment attached to a
given box if that meaning can also propagate to any other output arrow segment attached to the
same box. An arrow segment meaning may propagate to an output arrow segment attached to a

IEEE
SYNTAX AND SEMANTICS FOR IDEF0 Std 1320.1-1998

Copyright © 1998 IEEE. All rights reserved. 19

given box if and only if that arrow segment label cannot also propagate to any other output arrow
segment.

c) The meaning of an arrow segment may not propagate to any input, control, or mechanism arrow
segment attached to a given box if that meaning can also propagate to any other input, control, or
mechanism arrow segment attached to the same box. An arrow segment meaning may propagate to
an input, control, or mechanism arrow segment attached to a given box if and only if that arrow
segment label cannot also propagate to any other input, control, or mechanism arrow segment.

6.6 Arrow role conventions

A significant IDEF0 graphical convention allows a single control arrow to represent both control and
input for the same box if these arrow segments both branch from the same root. In this exceptional
convention, roles rather than objects are bundled in the control arrow. This convention reduces the
complexity of a diagram and emphasizes the control role of the bundled arrow; these features are
displayed in Figure 11. An arrow attached to an ancestral box as a control can appear in a descendent
diagram as a control, as an input, or as both a control and an input, depending on the relationship of the
bundled arrow to the activities modeled in the descendent diagram. When this convention is used, the
detail of separate input and control roles shall be shown in a descendent diagram. The diagram exhibiting
this detail shall show the unbundling of these arrow roles into separate inputs and controls and their
attachments to different boxes for different purposes.

An object may have more than one role with respect to an activity; the role is not inherent in the nature of
the object. This convention allows two roles to be represented by one arrow for convenience and to reduce
diagram clutter. This convention does not change control semantics into input semantics: an object in the
role of control may not be transformed into output, while an object in the role of input must be
transformed into output.

6.7 Activations

Models are general descriptions: they describe the general structure of a given process, the pattern
exhibited by any given instance, or activation, of that process. It is very important to note that there need
not be a contribution from every input, control, and mechanism arrow attached to a box in every activation
of the function represented by the box, nor need there be output of the sort indicated by every output
arrow. Under different circumstances, a box may perform selected parts of its function using different
combinations of input, control, and mechanism to produce different output. Hence, in general, a diagram
represents many different possible activations of any modeled process.

In particular, any attachment of an arrow to a box as input, control, or mechanism expresses an activation
constraint, that is, a requirement for a nonempty object set in a particular role as a precondition to some
execution of the activity; the function cannot act to produce some output in the absence of objects specified
by the nonempty object set. Which activations of a function are so constrained is determined by the
decomposition diagrams that detail the box to which the activation constraint applies.

6.8 Concurrent activation

Several functions in a model may be performed concurrently, if the needed constraints have been satisfied.
As illustrated in Figure 22, output of one box may provide some or all the physical and data objects
needed for activations of one or more other boxes. When output of one box provides some or all the input,
control, or mechanism needed by another box, a given activation of the latter box may depend on
sequential performance.

IEEE
Std 1320.1-1998 IEEE STANDARD FOR FUNCTIONAL MODELING

Copyright © 1998 IEEE. All rights reserved.20

7. IDEF0 diagrams

Several types of diagrams exist within an IDEF0 model. This clause identifies and discusses the types of
IDEF0 diagrams and their relationships.

The graphic IDEF0 diagram is the primary component of an IDEF0 model. An IDEF0 diagram contains
named boxes and labeled arrows; a diagram structures these graphic elements in accordance with the
syntactic and semantic rules of IDEF0. A box represents a function (see 6.1). A function may be analyzed
or decomposed into a more detailed diagram, and the boxes in such a decomposition diagram may in turn
be further decomposed into diagrams providing additional detail. Such decomposition continues until a
subject is rendered at the level of detailed exposition necessary to support the stated purpose of a particular
model.

The starting point for this analysis is the A-0 context diagram, which provides the most general or
abstract description of the subject represented by a model. The A-0 context diagram introduces a series of
one or more decomposition diagrams, starting with the A0 diagram, which provide successively deeper
analysis of the modeled subject.

The A-0 context diagram also defines the immediate context of the A0 function of an IDEF0 model;
optional context diagrams may provide further environmental context to expand and augment this
immediate context. These optional context diagrams include the A-1 context diagram.

All decomposition diagrams in an IDEF0 model descend from the model’s A-0 context diagram.
Conversely, all context diagrams in an IDEF0 model arise from the model’s A0 decomposition diagram.

7.1 Diagram identification

A diagram is identified within an IDEF0 model by both a unique diagram number (see 10.3) and a unique
diagram title. The diagram number and the diagram title that identify a diagram shall be recorded on the
diagram page that contains the identified diagram. With the exception of the A-0 context diagram and of
the highest optional context diagram, the diagram title shall be the same as the box name of the diagram’s
parent box and the diagram number shall be the same as the node number of the diagram’s parent
function.

Neither the A-0 context diagram nor the highest optional context diagram has a parent box from which to
inherit its diagram title nor a parent function from which to inherit its diagram number. A diagram title
for these diagrams shall combine the phrase “Context of” with a substantive equivalent of the box name of
the most important box in the diagram. For example, given an A-0 context diagram whose single box
contains the box name “Build Ship,” the diagram title of this context diagram would be “Context of Ship
Building.” In contrast, the diagram numbers for these context diagrams are a part of the IDEF0 language
itself (see 10.3).

7.2 A-0 context diagram

An IDEF0 model shall include an A-0 context diagram (see Clause 4) to be parent to the model’s A0
decomposition diagram. This diagram identifies the model, determines the subject of the model, and
defines the scope of analysis to be included in the model. This diagram also defines the model’s interfaces
with other activities that are outside the scope of the model. This context diagram is always called the “A-
0 context diagram,” where “A-0” is pronounced “A minus zero,” regardless of the actual node letter used
in a model (see 10.2).

The only function shown in an A-0 context diagram is the A0 function of a model. In the A-0 context
diagram of a model, the A0 function of the model is represented by box 0. This A0 function represents the
whole of the subject of the model; it is the unique parent of the entire modeled subject and thus the

IEEE
SYNTAX AND SEMANTICS FOR IDEF0 Std 1320.1-1998

Copyright © 1998 IEEE. All rights reserved. 21

ancestor of all activities modeled. By representing the A0 function, the A-0 context diagram sets a model’s
scope, that is, the boundaries of what may be included in that model.

The necessary and sufficient context required to understand and to analyze the A0 function according to
the model’s viewpoint and purpose is given by boundary arrows that identify inputs, controls, and
mechanisms required by the A0 function and outputs that it produces. The inputs, controls, and
mechanisms for the A0 function are made available by activities that are outside the scope of a model.
Similarly, the outputs of the A0 function are used by activities that also are outside the scope of a model.
These external activities shall not be analyzed or represented in the decomposition diagrams of a model.
Because the context for the A0 function as given by the A-0 diagram does not identify these external
functions, this context is often called the immediate context of the A0 function.

All decomposition diagrams are strictly bound in scope to the limits of the A0 function as specified by the
A-0 context diagram. In particular, the boundaries of a model’s A0 decomposition diagram are precisely
coextensive with the boundaries of the model’s A-0 context diagram. Thus, an A-0 context diagram is the
strict parent of its A0 decomposition diagram and the ancestor of all further decomposition diagrams.

The A-0 context diagram of an IDEF0 model shall contain only one box, box 0, which represents the A0
function of the model. The A-0 context diagram shall present the model name, the model name
abbreviation, and brief text statements that specify the viewpoint and the purpose of the model; these
statements will guide and constrain the model’s development. Boundary arrows connected to box 0 shall
identify the necessary and sufficient inputs, controls, mechanisms, and outputs required to establish the
immediate context of the A0 function. These boundary arrows may not have ICOM codes or tunnel
notations at their unconnected ends.

All decomposition diagrams in an IDEF0 model descend from the model’s A-0 context diagram.
Conversely, all context diagrams in an IDEF0 model arise from the model’s A0 decomposition diagram.
Due to its unique responsibility to define the purpose and scope of an IDEF0 model, an A-0 context
diagram does not itself have a parent diagram; instead, the parental context of the A-0 diagram is defined
by the IDEF0 language to be the token TOP (see also 7.7).

An example A-0 context diagram is shown in Figure 23.

7.3 Model name

Each model shall be given a unique, descriptive model name that distinguishes it from other models. A
unique model name abbreviation shall be derived from this model name; the model name abbreviation is
used to construct diagram reference expressions.

A model’s full name and its abbreviation shall be placed together in the A-0 context diagram of the IDEF0
model. A model name abbreviation shall consist of two or three uppercase alphanumeric characters. For
example, a model named “Manufacturing Operations” may be abbreviated MFG (see 10.6 for a discussion
of diagram references). A model name abbreviation is typically given in parentheses following the model
name, in this way: “Maritime Pipe Laying (MPL).” A model name is a required textual element in an A-0
context diagram, and, therefore, shall not be marked as a model note. Each model shall have only one
model name and one model name abbreviation.

7.4 Model viewpoint

A viewpoint statement guides and constrains a model’s development. This statement determines what can
be seen within a model’s context and shapes what a model will notice and pay attention to. Different
viewpoints emphasize different aspects of the same subject and necessitate different models. Functions,
objects, and data that are important in one viewpoint may not even appear in a model developed from
another viewpoint of the same subject.

IEEE
Std 1320.1-1998 IEEE STANDARD FOR FUNCTIONAL MODELING

Copyright © 1998 IEEE. All rights reserved.22

The viewpoint statement for a model shall be placed in the A-0 context diagram of the model and is a
brief sentence that identifies a person or a personified role. The perspective of this person or role
determines the model’s viewpoint. A viewpoint statement is a required textual element in an A-0 context
diagram, and, therefore, shall not be marked as a model note. Each model shall have only one viewpoint
statement.

7.5 Model purpose

A purpose statement guides and constrains a model’s development and expresses the reason a model is
created. The purpose statement determines the question that is to be answered by a model. When the
purpose statement is fulfilled by a satisfactory answer to the question posed, the modeling effort
concludes.

The purpose statement for a model shall be placed in the A-0 context diagram of the model and is a brief
sentence that identifies the question addressed by a model. A purpose statement is a required textual
element in an A-0 context diagram, and, therefore, shall not be marked as a model note. Each model shall
have only one purpose statement.

7.6 Optional context diagrams

An IDEF0 model may include context diagrams (see 7.2) that provide a fuller exposition of the
environment of a model. These optional diagrams examine the environment of the A0 function and model
a broader scope than the A-0 context diagram. Because optional context diagrams incorporate functions
that are outside the scope of a model’s decomposition diagrams, these diagrams are often called the
environmental context of the A0 function.

By providing a more extensive description of a modeled system’s environment, optional context diagrams
provide more constraining specifications on the boundary conditions of a modeled system. Contextual
modeling provides details about the sources and uses of the physical and data objects modeled as boundary
arrows in the A-0 context diagram. Such detail may not precisely match any particular “real world”
environment but this detail is not intended to be definitive. Optional context diagrams serve their purpose
sufficiently by describing typical environmental contexts.

Optional context diagrams add functions to the environment of the A0 function of a model. These
functions are outside the scope of the A0 diagram as established by the A-0 context diagram. The
boundary arrows of the A-0 context diagram specify the inputs, controls, and mechanisms required by the
A0 function and the outputs it produces. These neighboring functions provide the A0 function with these
inputs, controls, and mechanisms. These functions can also use outputs of the A0 function for their own
activations. Optional context diagrams illuminate this set of mutually constraining dependencies and so
define an environment that is necessary for the A0 function to operate.

 The A-1 context diagram. The first of the optional context diagrams is the A-1 context diagram.
The A-1 context diagram (pronounced “A minus one”) is constructed to be a second parent to a
model’s A0 decomposition diagram (see also 7.2). This parent/child relationship between the A-1
and the A0 diagrams links the optional context diagrams to the decomposition diagrams that
descend from the A-0 context diagram. Because the A0 function appears in both the A-0 and A-1
context diagrams, both context diagrams are parents of the model’s A0 diagram. If present, the A-1
context diagram replaces the A-0 context diagram as the parental context of the A0 diagram.

 Lineal ancestry. Optional context diagrams include high-level context diagrams and their
contextual descendants. High-level context diagrams are lineal ancestors of the A0 diagram
because they decompose the lineal ancestors of the A0 function. Their contextual descendants
decompose other functions that are not lineal ancestors of the A0 function. The high-level context
diagrams A-1, A-2, A-3, A-4, A-5, A-6, A-7, A-8, and A-9 are defined as the lineal ancestors of the

IEEE
SYNTAX AND SEMANTICS FOR IDEF0 Std 1320.1-1998

Copyright © 1998 IEEE. All rights reserved. 23

A0 diagram. The A-1, A-2, A-3, A-4, A-5, A-6, A-7, and A-8 functions are defined as the lineal
ancestors of the A0 function.

The A-1 context diagram is one parent of the A0 diagram (the other parent is the A-0 context diagram).
The grandparent of the A0 diagram is the A-2 context diagram, the great-grandparent of the A0 diagram
is the A-3 context diagram, and so on, through the A-9 context diagram, which is the highest ancestry
allowed. (An A-1 context diagram is not parent to the A-0 context diagram.)

A model may contain up to nine lineal ancestors to the A0 diagram as optional context diagrams. The last
ancestral diagram in a sequence of lineal ancestors will have no parent diagram and is called the highest
optional context diagram. All parent/child diagram relationships between the highest optional context
diagram and the A0 diagram must be included in a model. Thus, if the highest optional context diagram is
the A-5 context diagram, then the A-1, A-2, A-3, A-4, and A-5 context diagrams must all be included in
the model.

Figure 25 illustrates, in node-tree form, the diagram structure of a possible environmental context for the
A0 function of an IDEF0 model. Both the A-0 and the A-1 context diagrams are parents to the A0
diagram. The A-2 and A-1 context diagrams are lineal ancestors of the A0 decomposition diagram. The
A-2 diagram is the grandparent of the A0 diagram and the highest context diagram in this model. The A-
24 and A-212 context diagrams are contextual descendants of the lineal ancestor A-2. The A-13 and A-
141 context diagrams are contextual descendants of the lineal ancestor A-1. Note that all context diagrams
are characterized by negative diagram numbers. Note also that the A-2 diagram is parent to diagrams A-
21, A-22, A-1, and A-24. By the rules that associate box numbers, node numbers, and diagram numbers,
there must be boxes with box numbers 1, 2, -1, and 4 in diagram A-2. Diagrams A-21, A-22, and A-24 are
contextual descendants of the A-2 diagram while diagram A-1 is a lineal ancestor of the A0 diagram.

A model may contain any number of optional context diagrams; functions shown in optional context
diagrams may be decomposed in the ordinary way (see 7.7). A function that provides or uses physical and
data objects modeled as boundary arrows in the A-0 diagram may be represented by a box in any optional
context diagram. The environmental context is not required to identify functions to provide every input,
control, or mechanism or to use every output defined in the A-0 diagram. A boundary arrow in the A-0
diagram may also be represented as a boundary arrow in the highest optional context diagram, and such
representation indicates that the source or use of this physical or data object is not examined within the
presented environmental context.

Optional context diagrams shall follow the same syntactic and semantic rules as decomposition diagrams,
with these exceptions:

a) Diagrams, functions, and boxes that represent the lineal ancestry of the A0 function shall be
numbered using predefined negative numbers (see Clause 10).

b) In each optional context diagram that is a lineal ancestor of the A0 diagram, one box shall be
assigned a negative box number.

c) A function that is a lineal ancestor of the A0 function, i.e., a function identified in an optional
context diagram by a predefined negative node number, shall be decomposed.

d) A box with a negative box number represents a function that is a lineal ancestor of the A0 function.
Such a box shall have a box detail reference.

e) Arrows shall not be tunneled in optional context diagrams. Each arrow attached to a parent box
shall correspond to a boundary arrow on the child diagram. Arrow tunneling is not permitted in
any optional context diagrams, except to show tunnel notation that may have been used in the A-0
diagram.

Additional requirements for the A-1 context diagram are

IEEE
Std 1320.1-1998 IEEE STANDARD FOR FUNCTIONAL MODELING

Copyright © 1998 IEEE. All rights reserved.24

 The A-1 context diagram shall contain one box with the box number 0 to represent the A0 function
of a model (see 10.1).

 The immediate context of the A0 function as specified in the A-0 diagram shall be repeated in the
A-1 diagram, that is, all physical and data objects modeled by boundary arrows attached to box 0 in
the A-0 context diagram shall be also be represented by arrows attached to box 0 in the A-1 context
diagram. Only those arrows shown in the A-0 context diagram may be attached to box 0 in the A-1
context diagram; no additional arrows may be attached to box 0 in the A-1 diagram.

An example A-1 context diagram is shown in Figure 24.

Additional requirements for the highest optional context diagram are

 The parental context of the highest optional context diagram is defined by the IDEF0 language as
the token NONE.

 As with the A-0 diagram, boundary arrows in the highest optional context diagram may not attach
to ICOM codes.

7.7 Decomposition diagrams

Decomposition is the partitioning of a modeled function into its component functions. A decomposition
diagram is a diagram that shows the detail of boxes and arrows for such a decomposition. The single
function represented in the A-0 context diagram is decomposed into its major subfunctions by creating its
decomposition diagram. In turn, each of these subfunctions may be decomposed, each creating another
lower-level decomposition diagram. A decomposition diagram is also called a child diagram, and the
diagram that contains the box that is detailed by the decomposition is also called a parent diagram. Some
of the functions, none of the functions, or all of the functions in a given diagram may be decomposed.
Each decomposition diagram contains the boxes and arrows that provide additional detail about the
decomposed box.

The diagram that results from the decomposition of a function covers the same scope as the box it details.
Thus, a decomposition or child diagram may be thought of as the interior of the parent box it details. This
decomposition structure is illustrated in Figure 26.

7.8 Parent/child diagram relations

A parent diagram is a diagram that contains one or more parent boxes, i.e., a box that is detailed by a
decomposition diagram. Every ordinary (noncontext) diagram is also a child diagram, since by definition
it details a parent box. Thus a diagram may be both a parent diagram (containing parent boxes) and a
child diagram (detailing its own parent box). Likewise, a box may be both a parent box (a box detailed by
a child diagram) and a child box (a box that appears in a child diagram). The primary hierarchical
relationship is between a parent box and the child diagram that details it.

Thus A0 is always the node number of the top-level function in a model and at the same time the diagram
number of its child diagram; together, these represent the whole model. The model’s parent A0 function is
always detailed by functions with node numbers A1, A2, A3, to at most A9.

The parental context provides or names the context for a diagram without its own parent diagram. If there
is no A-1 context diagram, the parental context of the A0 diagram is the A-0 context diagram. If there is
an A-1 context diagram, the A-1 diagram is taken to be the parent of the A0 diagram.

A box that is not further decomposed is called a leaf node of the decomposition. A leaf node is represented
as a box that does not have the enclosed corner known as a box detail reference.

IEEE
SYNTAX AND SEMANTICS FOR IDEF0 Std 1320.1-1998

Copyright © 1998 IEEE. All rights reserved. 25

8. IDEF0 model pages

Each diagram in an IDEF0 model is associated with several model pages. These pages are identified and
discussed in this clause.

A model page is associated with and provides information supporting a specific diagram. A model page is
cross-referenced to other model pages by page references, which tie each model page to its associated
diagrams. A page reference for a model page is formed by appending one or more page type letters to the
diagram reference of an associated diagram (see 10.7).

A model page that provides general or global information for an entire model rather than for one specific
diagram shall be associated with the A-0 context diagram.

A model page may be presented on an IDEF0 standard diagram form (SDF).

8.1 Diagram pages

A diagram page is a model page that contains an IDEF0 context or decomposition diagram. Each diagram
in an IDEF0 model shall be presented on a separate diagram page. A diagram page may be designated in
a page reference by the page type letter “D.”

8.2 Text pages

A text page is a model page that contains information primarily presented in words rather than pictures or
graphics. A text page may supplement a model page of any type. A text page shall be designated in a page
reference by the page type letter “T.”

At least one text page is required to describe each diagram in a model. This text page shall provide a
concise overview of the diagram. Text shall be used to highlight features, structures, and interbox
connections and to clarify the intent of items and patterns considered to be of significance. Text shall not
be used merely to describe, redundantly, the meaning of boxes and arrows.

8.3 Glossary pages

A glossary page is a model page that contains terms and their definitions. A glossary page may
supplement a model page of any type and shall be designated in a page reference by the page type letter
“G.”

a) Model glossary. Instead of individual glossary pages, a single alphabetically sorted glossary may be
provided for all terms used an IDEF0 model.

b) Glossary entries. A glossary entry shall include the text of the term to be defined and the text of its
definition. The text of a glossary term shall be identical to the text of the term as it appears in the
diagrams of the model.

Each arrow label in a model shall be defined as a glossary entry. The definition for an arrow label
shall include a description of the content of the arrow segment that the arrow label identifies, i.e.,
the arrow meaning. If an arrow segment is a bundled collection of other arrows, the definition shall
identify the arrows in the bundle.

Each box name in a completed model that corresponds to a leaf node shall be defined as a glossary
entry. The definition for a leaf node’s box name shall describe the function represented by the box,
as though the box had been decomposed.

IEEE
Std 1320.1-1998 IEEE STANDARD FOR FUNCTIONAL MODELING

Copyright © 1998 IEEE. All rights reserved.26

A box name that corresponds to a decomposition diagram (i.e., a nonleaf node) may be included as
a glossary entry. The definition for a box detailed by a child diagram shall be of the form “See
(diagram number of the function’s decomposition).” For example, the definition for some function
A32 Prepare Glossary Definitions that is the parent of a decomposition diagram A32, would be:
“Prepare Glossary Definitions. See diagram A32.”

Terms that may be useful for understanding a diagram (e.g., key words, phrases, acronyms) or
terms used to construct arrow labels and box names (e.g., constituent terms) may be included as
glossary entries.

8.4 FEO pages

A FEO (pronounced “fee-oh”) page is a model page that contains information primarily presented in
pictures or graphics rather than words. A FEO page may supplement a model page of any type and shall
be designated in a page reference by the page type letter “F.”

As required, FEO pages may be used to supplement a diagram. A FEO page shall be used where
additional graphically oriented information is required to adequately understand a specific area of a
model. Such supplementary information should be limited to what is needed to achieve the stated purpose
of a diagram for a knowledgeable audience. The contents of a FEO page need not comply with IDEF0
syntax rules.

8.5 Other pages

As required, other types of pages may be defined with a meaning and usage specific to a particular model,
modeling process, or modeling project, e.g., kit pages within a model construction kit cycle.3 A page type
letter shall be assigned for each such type of page; this page type letter shall then be used to create page
references for model pages of that type.

9. IDEF0 diagram features

This clause discusses specific features found in an IDEF0 diagram, including box and arrow layouts that
have syntactic significance, ICOM coding, arrow tunneling, and model notes.

9.1 Boxes

Except for the A-0 context diagram, a diagram shall contain a minimum of two and a maximum of nine
boxes. Boxes are normally organized diagonally from the upper left corner to the lower right corner, i.e.,
in a configuration resembling a staircase descending to the right. This diagonal organization of boxes
allows input, control, output, and mechanism (ICOM) boundary arrows to be drawn directly to each box
without routing around other boxes. An arrow and a box shall not occupy the same space nor overlay each
other in a diagram; an arrow that does not attach to a box shall go around the box.

9.2 Interbox connections

Any output arrow may provide some or all of the input, control, or mechanism physical or data objects to
any other box. An output arrow may provide physical and data objects to several boxes by branching, as
shown in Figure 27.

3The IDEF kit cycle is outside the scope of this standard.

IEEE
SYNTAX AND SEMANTICS FOR IDEF0 Std 1320.1-1998

Copyright © 1998 IEEE. All rights reserved. 27

If a box in a diagram is detailed by a child diagram, each arrow connected to the parent box shall appear
in the child diagram, unless the arrow is tunneled at a side of the parent box (see 9.4). The arrow labels of
arrows attached to a parent box shall be identical to the arrow labels of the boundary arrows in its child
diagram.

Each box in a diagram shall be connected by some sequence of arrows and boxes to at least one control
boundary arrow and to at least one output boundary arrow in that diagram. An unconnected box may not
appear in a diagram.

In a diagram, physical and data objects are represented by internal arrows and by boundary arrows. An
internal arrow is an arrow that is attached at both head and tail to boxes in the same diagram. An internal
arrow represents the output of one function that is used as the input, control, or mechanism for another
function in the same diagram. In contrast, a boundary arrow is an arrow that is attached at only one end,
either head or tail, to one box in a diagram; the unconnected end represents a connection to an arrow
segment attached to a box in an ancestral diagram. Internal arrows and boundary arrows are shown in
Figure 28. Boundary arrows are discussed in detail in 9.3.

Loopback refers to an internal arrow that is the output of a box whose box number is greater than the box
number of the box that uses that arrow as input, control, or mechanism. As illustrated in Figure 29,
control loopback shall be drawn as “up and over.” As illustrated in Figure 30, both input and mechanism
loopback shall be drawn as “down and under.”

9.3 Boundary arrow segments

Boundary arrows on a decomposition diagram represent the inputs, controls, outputs, and mechanisms of
the diagram’s parent function. The source or use of these boundary arrow segments can be found only by
examining the parent diagram. Each boundary arrow in a child diagram shall have the same name as
exactly one arrow segment attached to an ancestral box of that diagram, as shown in Figure 31.

There shall be a one-to-one correspondence between the arrow segments attached to a parent box and the
boundary arrow segments of its decomposition diagram. Input, control, or mechanism boundary arrows
that represent the same physical and data objects shall be connected through a branch; the boundary arrow
segment shall branch into as many arrows as required for the diagram. Multiple output boundary arrows
that represent the same physical and data objects shall join to form a single output boundary arrow
segment. Branching inputs and joining outputs are illustrated in Figure 32.

A boundary arrow segment shall connect an ICOM code to a box or a junction. A boundary arrow
segment may not connect two ICOM codes.

9.3.1 ICOM coding of boundary arrows

An ICOM code maps a boundary arrow in a diagram to an arrow attached to an ancestral box of that
diagram. The use of ICOM codes, although optional, is strongly encouraged because they are required to
form reference expressions.

A complete ICOM code is a diagram feature reference that explicitly identifies a diagram, a box, a side of
the box, and an ordinal point of attachment of an arrow to that side of that box in that diagram. Examples
of complete ICOM codes are given in Table 4. ICOM codes are of two types: boundary ICOM codes and
box ICOM codes. Boundary ICOM codes are used to map an untunneled boundary arrow in a child
diagram to an arrow attached to the parent box that is detailed by that diagram. Box ICOM codes are used
to map tunneled boundary arrows to an arrow attached to some ancestral box. Box ICOM codes and their
use are discussed in 9.4.

9.3.2 Boundary ICOM code

IEEE
Std 1320.1-1998 IEEE STANDARD FOR FUNCTIONAL MODELING

Copyright © 1998 IEEE. All rights reserved.28

When ICOM coding is used, the unconnected end of an untunneled boundary arrow shall be attached to a
boundary ICOM code. A boundary ICOM code consists of an ICOM letter (I, C, O, or M) followed by an
ICOM number (i.e., a nonzero positive integer). The ICOM letter signifies that the boundary arrow maps
to an arrow attached to the parent box of the current diagram as an input, control, output, or mechanism.
The ICOM number signifies the ordinal position at which that arrow is attached to the parent box. The
order of attachment is counted from left to right for control and mechanism arrows or from top to bottom
for input and output arrows. For example, the boundary ICOM code C3 indicates that the untunneled
boundary arrow attached to the ICOM code corresponds to the third control arrow attached to the top side
of the decomposition diagram’s parent box, counting from the left.

Boundary ICOM codes relate a child diagram to its own immediate parent box. Boundary ICOM codes are
assigned anew for every decomposition diagram. The boundary ICOM codes of one diagram have no
relationship to boundary ICOM codes on any other diagram. Boundary ICOM codes always map the
boundary arrows of a child diagram to arrows attached to that diagram’s own immediate parent box.

A boundary ICOM code indicates an arrow’s role with respect to a child diagram’s parent box. A parental
output arrow requires an output boundary arrow in the child diagram. However, a parental arrow with
another role—input, control, or mechanism—does not determine the role of its corresponding boundary
arrow in the child diagram. The arrow roles of input, control, and mechanism may change between parent
box and child diagram. Ordinarily, as shown in Figure 26, arrow roles for parent box and detailing
diagram do match, i.e., an input for a parent box is also an input for one or more boxes in the child
diagram. However, a control arrow attached to a parent box may be either input or control for boxes in the
child diagram. Similarly, a mechanism for a parent box may be an input for one or more boxes in the
child diagram. Figure 33 shows examples of boundary arrows that change their roles.

9.4 Tunneled arrows

A tunneled arrow hides physical and data objects from a reader’s view as the arrow logically traverses one
or more diagrams. An arrow may be tunneled when the arrow’s meaning—the physical and data objects
that the arrow represents—can be ignored for one or more diagrams that are hierarchically consecutive
within a model.

An arrow may be tunneled for any diagram. An arrow may be tunneled for any number of hierarchically
consecutive diagrams, including context diagrams and leaf diagrams without children. A tunneled arrow
shall traverse at least one diagram before it may be made visible again. An arrow tunneled into or out of a
box shall not be visible in the diagram that details that box; symmetrically, an arrow tunneled into or out
of a diagram shall not be visible in the parent diagram.

Formally, a tunneled arrow may only exist between an ancestral box and a descendent diagram. Further,
the most ancestral box of any tunneled arrow is box 0 of the A-0 context diagram. A tunneled arrow may
not disappear or reappear in the A-1 context diagram nor in any higher context diagram.

9.4.1 Tunnel notation

The tunnel notations illustrated in Figures 34 and 35 mark the disappearance and reappearance of
tunneled arrows. A tunnel notation shall be made by bracketing the head or the tail of an arrow segment
within a pair of short, shallow arcs that are drawn to resemble a pair of left and right parentheses
characters. Applying tunnel notation to an arrow is called “tunneling” the arrow.

There are two possible paired applications of tunnel notation. The first paired application of tunnel
notation is used to tunnel input, control, and mechanism arrows in. The second paired application is used
to tunnel output arrows out.

a) To tunnel an input, control, or mechanism arrow in, follow the steps below:

IEEE
SYNTAX AND SEMANTICS FOR IDEF0 Std 1320.1-1998

Copyright © 1998 IEEE. All rights reserved. 29

1) Tunnel notation shall be applied to the head of an input, control, or mechanism arrow where
the arrow is attached to a box, as shown in Figure 34. Such a disappearing arrow is said to be
“tunneled into the box.” A model note which contains a diagram reference to the descendent
diagram where the tunneled arrow reappears may be placed by the disappearing arrow.

2) The tunneled arrow shall be omitted from one or more hierarchically consecutive descendent
diagrams. The tunneled arrow is now “in the tunnel.” The tunneled arrow disappears until it
reappears at the boundary of a descendent diagram.

3) Tunnel notation shall be applied to the tail of the input, control, or mechanism boundary arrow
in the diagram where the tunneled arrow reappears, as shown in Figure 35. Such a
reappearing arrow is said to be “tunneled into the diagram.” If ICOM coding is used, the tail
of this arrow shall be attached to a complete box ICOM code; if ICOM coding is not used, a
model note that contains a complete box ICOM code for the ancestral box where the tunneled
arrow disappears shall be placed by the reappearing arrow.

An arrow tunneled into a box shall also be tunneled into a descendent diagram that details that
box. Conversely, an arrow tunneled into a diagram shall also be tunneled into an ancestral box of
that diagram.

In the case that a required descendent diagram does not exist because the A0 activity has not been
decomposed to that level in a model, a model note shall be placed by the tunneled arrow where it
tunnels into or out of a box. This model note shall identify as clearly as possible the activity that
would be detailed by the diagram where the tunneled arrow presumably would reappear (if
tunneled into the box) or disappear (if tunneled out of the box).

b) To tunnel an output arrow out, follow the steps below:

1) Tunnel notation shall be applied to the head of an output boundary arrow, as shown in Figure
35. Such a disappearing arrow is said to be “tunneled out of the diagram.” If ICOM coding is
used, the head of the arrow shall be attached to a complete box ICOM code; if ICOM coding is
not used, a model note that contains a complete box ICOM code for the ancestral box where
the tunneled arrow reappears shall be placed by the arrow.

2) The tunneled arrow shall be omitted from one or more hierarchically consecutive ancestral
diagrams. The tunneled arrow is now “in the tunnel.” The tunneled arrow disappears until it
reappears attached to the side of an ancestral box.

3) Tunnel notation shall applied to the attached tail of the output arrow, as shown in Figure 34,
in the diagram where the tunneled arrow reappears. Such a reappearing arrow is said to be
“tunneled out of the box.” A model note that contains a diagram reference for the descendent
diagram where the tunneled arrow disappears shall be placed by the reappearing arrow.

An arrow tunneled out of a descendent diagram shall also be tunneled out of one of that diagram’s
ancestral boxes. Conversely, an arrow tunneled out of an ancestral box shall also be tunneled out of
at least one of its descendent detailing diagrams.

9.4.2 Complete box ICOM code

A boundary arrow that is tunneled into or out of a diagram corresponds to an arrow attached to a box in
an ancestral diagram. A complete box ICOM code is a reference expression that identifies the point of
disappearance of a tunneled input, control, or mechanism arrow or the point of reappearance of a tunneled
output boundary arrow. Just as an untunneled boundary arrow is mapped to an arrow attached to a
diagram’s immediate parent box on its parent diagram by a boundary ICOM code, a complete box ICOM
code maps a tunneled boundary arrow to an arrow attached to a specific box in a specific ancestral
diagram.

IEEE
Std 1320.1-1998 IEEE STANDARD FOR FUNCTIONAL MODELING

Copyright © 1998 IEEE. All rights reserved.30

If ICOM coding is used, the unconnected end of a tunneled boundary arrow shall be attached to a
complete box ICOM code. Following the syntax of a diagram.feature reference (see Clause 11), a
complete box ICOM code is a diagram.icom reference, where the icom reference is a box ICOM code. A
complete box ICOM code consists of a diagram number, a period, a box number (i.e., a single digit), an
ICOM letter (I, C, O, or M), and an ICOM number (i.e., a nonzero positive integer). The diagram number
specifies the ancestral diagram that contains the box specified by the ICOM box number. The ICOM letter
signifies that the boundary arrow maps to an arrow attached to that ancestral box as an input, control,
output, or mechanism. The ICOM number signifies the ordinal position at which that arrow is attached to
the ancestral box. The order of attachment is counted from left to right for control and mechanism arrows
or from top to bottom for input and output arrows. For example, the complete box ICOM code A42.3C3
indicates that its attached tunneled boundary arrow corresponds to the third arrow, counting from the left,
attached to the top or control side of the third box in diagram A42 of the current model.

In the case that the ancestral box is box 0 of the A-0 context diagram, the complete box ICOM code is A-
0.0Ln, where L is the ICOM letter and n is the ICOM number. Note that the diagram reference A-1 is not
allowed in an ICOM code. For example, the complete box ICOM code for the attachment of an arrow as
the second control to box 0 in the A-0 diagram would be A-0.0C2. Because only one box 0 exists in an
IDEF0 model (although it may be represented both in the A-0 context diagram and in an A-1 context
diagram), the box ICOM code 0C2 is itself not ambiguous. Because of this, by syntactic convention, the
context diagram reference may be omitted from the ICOM code for an arrow explicitly tunneled into box 0
of the context diagram.

Another important syntactic convention is allowed for the case that the ancestral box is box 0 of the A-0
context diagram but the arrow is not explicitly shown in the context diagram. All external interfaces to
any decomposition activity of the A0 activity are logically required to be interfaced to the A0 activity.
However, because every decomposition activity is completely within the scope of the A0 activity, it may
not be graphically appropriate to explicitly render each such arrow or to express such arrows at an
appropriate level of abstraction in the context diagram. In this case, the complete box ICOM code is
simply A-0.0L, where L is the ICOM letter and the shorthand allowed by syntactic convention is simply
0L. For example, a low-level output arrow, tunneled out of a diagram deep within a decomposition
hierarchy, which the modeler chooses not to present in the context diagram, may use 0O as its complete
box ICOM code.

Figures 36 through 41 illustrate the correct representation of tunneled arrows.

9.5 Model notes

A model note is a block of text or a graphical figure, such as an icon or photograph, that has been placed
in a diagram by the diagram’s author. Model notes are optional elements of a diagram and have no
syntactic significance. However, once placed by an author, a model note is considered a permanent and
essential component of a diagram. (In contrast, reader notes may be placed on a diagram by readers and
authors when a model is reviewed. Reader notes are transient comments, questions, and responses about a
diagram but are not part of the diagram.) In a diagram, each model note shall be identified by an integer
number placed inside a small square; such a boxed number is called a model note number. Numerous
examples of model note numbers and the model notes they identify are in the figures that illustrate this
document.

In a given diagram, model note numbers shall form a consecutive sequence, starting with the number 1. A
reference to a model note in accompanying text may use an alternate notation that is supported by

IEEE
SYNTAX AND SEMANTICS FOR IDEF0 Std 1320.1-1998

Copyright © 1998 IEEE. All rights reserved. 31

commonly available fonts: a model note number may be written as an integer number bracketed by
vertical lines. For example, the notation |4| refers to model note 4 in a diagram4.

A model note provides information that is an integral part of a diagram’s message but is not well
expressed by IDEF0 box-and-arrow syntax. If a model note refers to a specific diagram feature, this
feature shall be identified by an diagram feature reference in the model note. If a model note applies to
more than one place or feature of a diagram, a copy of its model note number may be placed by each of
these features. A model note number shall be in the same diagram as the model note it identifies.

10. IDEF0 reference expressions

The basic unit of an IDEF0 reference is the node number, which identifies a function in an IDEF0 model.
The IDEF0 language defines the origin of the IDEF0 coordinate system to be the node number A0 and
provides a carefully designed scheme of expressions based upon node numbers that allows every diagram,
every diagram feature, and every diagram page to be unambiguously identified in an IDEF0 model.

The first part of a node number is normally a diagram number and the last part of a node number is
always a box number. A typical node number is A435; this node number identifies the function
represented by box 5 in diagram A43. In turn, a diagram number is generally the node number of the
function that is detailed by a diagram. The diagram number A43 indicates that this diagram presents the
decomposition of function A43. The node number A43 indicates the function represented by box 3 in
diagram A4, and in turn diagram A4 presents the decomposition of function A4.

a) Predefined diagram numbers. However, there are certain context diagrams in an IDEF0 model that
do not have a parent function. Due to the recursive way in which node numbers are defined in
terms of diagram numbers and diagram numbers are defined in terms of node numbers, the IDEF0
language provides predefined diagram numbers for these cases. These predefined diagram numbers
allow node numbers to be defined for functions represented by boxes in diagrams that have no
parent function. These predefined diagram numbers, as well as predefined node numbers and box
numbers, are specified in Table 1.

1) The predefined diagram number A-0. The most important predefined diagram number is the
A-0 diagram number that identifies the required A-0 context diagram. The IDEF0 language
defines the A0 function to be the single function represented in this diagram. However, no
function in an IDEF0 model may be identified by the node number A-0.

2) Other predefined context diagram numbers. Other optional context diagrams may also be
provided for a model. A model may contain from one to nine such context diagrams, providing
the environmental context for the A0 function and similar contexts for as many as eight lineal
ancestors of the A0 function. Because these context diagrams are optional, any of the nine
possible diagrams may be the highest diagram in a model. Just as the A-0 diagram has no
parent function, the highest optional context diagram will have no parent function. Because
any of these nine possible context diagrams may be the highest context diagram in a model
and thus any of these nine possible context diagrams may have no parent function that can be
used as a diagram number, the IDEF0 language provides predefined diagram numbers for all
nine cases. Thus, in addition to the predefined diagram number A-0, the other predefined
diagram numbers provided by the IDEF0 language are: A-1, A-2, A-3, A-4, A-5, A-6, A-7, A-

4This use of straight lines contrasts to reader notes, which are written with parentheses. The roundness of the parentheses visually alludes
to the circle that designates a reader note number on a model page. Similarly, the straightness of the model note’s bracketing vertical bars
visually alludes to the square that designates a model note number in a diagram. For example, a model reviewer might write, “On this
diagram, reader note (2) questions the sufficiency of the claim made by model note |5| for the error management provided by the transform
A3543 as modeled by box 3.

IEEE
Std 1320.1-1998 IEEE STANDARD FOR FUNCTIONAL MODELING

Copyright © 1998 IEEE. All rights reserved.32

8, and A-9. These predefined diagram numbers may be referred to as “negative diagram
numbers.”

b) Predefined node numbers. Due the recursive definition of diagram numbers and node numbers, the
predefined diagram numbers for optional context diagrams are coupled with similarly predefined
node numbers. These predefined node numbers allow the diagram numbers for context diagrams
lower than the highest context diagram to follow the rule that a diagram number is the same as the
node number of the function that is parent to the diagram. The IDEF0 language provides these
predefined node numbers for functions in context diagrams: A-8, A-7, A-6, A-5, A-4, A-3, A-2, A-
1, and A0. These predefined node numbers, including node number A0, may be referred to as
“negative node numbers.”

c) Predefined box numbers. Because a node number is defined to include a box number, the
predefined node numbers for functions in optional context diagrams are coupled with similarly
predefined box numbers. These predefined box numbers allow the predefined node numbers to
follow the rule that the last part of a node number is always a box number. The IDEF0 language
provides these predefined box numbers for boxes in context diagrams: 0, -1, -2, -3, -4, -5, -6, -7,
and -8. These predefined box numbers, including box number 0, may be referred to as “negative
box numbers.”

d) Negative references. The hyphen character in negative box numbers, negative node numbers, and
negative diagram numbers shall be read as the word “minus.” For example, the box number “-8” is
pronounced “minus eight,” the node number “A-13” is pronounced “A minus one three,” the
diagram number “A-0” is pronounced “A minus zero,” and the diagram number “A-924” is
pronounced “A minus nine two four.”

e) Parenting the A0 diagram. The box number 0 appears in both the A-0 context diagram and the A-1
context diagram to identify the box that represents the A0 function of a model. Box 0 is defined by
the IDEF0 language to represent the function identified by the node number A0 and to be the
parent box of the A0 diagram.

Table 1—Predefined diagram numbers, node numbers, and box numbers

IEEE
SYNTAX AND SEMANTICS FOR IDEF0 Std 1320.1-1998

Copyright © 1998 IEEE. All rights reserved. 33

Predefined
diagram

number
a

Predefined
node

number
b, c

Predefined
box

number
d

Node numbers of possible

functions in diagram
e, f

 and
example node number sequence

in diagram

Example box
number

sequence in

diagram
g Comment

A-9
h A-8 -8 A-8, A-91, A-92, A-93, …, A-99

A-91, A-92, A-8, A-94, A-95 1, 2, -8, 4, 5

Highest possible context diagram.

Optional context diagram. Defined
as parent of A-8 diagram.

A-8 A-7 -7 A-7, A-81, A-82, A-83, …, A-89

A-81, A-7, A-83, A-84, A-85 1, -7, 3, 4, 5

Optional context diagram. Defined
as parent of A-7 diagram.

A-7 A-6 -6 A-6, A-71, A-72, A-73, …, A-79

A-71, A-72, A-73, A-74, A-6 1, 2, 3, 4, -6

Optional context diagram. Defined
as parent of A-6 diagram.

A-6 A-5 -5 A-5, A-61, A-62, A-63, …, A-69

A-61, A-62, A-5, A-64, A-65 1, 2, -5, 4, 5

Optional context diagram. Defined
as parent of A-5 diagram.

A-5 A-4 -4 A-4, A-51, A-52, A-53, …, A-59

A-4, A-52, A-53, A-54, A-55 -4, 2, 3, 4, 5

Optional context diagram. Defined
as parent of A-4 diagram.

A-4 A-3 -3 A-3, A-41, A-42, A-43, …, A-49

A-41, A-42, A-3, A-44, A-45 1, 2, -3, 4, 5

Optional context diagram. Defined
as parent of A-3 diagram.

A-3 A-2 -2 A-2, A-31, A-32, A-33, …, A-39

A-31, A-32, A-33, A-2, A-35 1, 2, 3, -2, 5

Optional context diagram. Defined
as parent of A-2 diagram.

A-2 A-1 -1 A-1, A-21, A-22, A-23, …, A-29

A-21, A-22, A-23, A-24, A-1 1, 2, 3, 4, -1

Optional context diagram. Defined
as parent of A-1 diagram.

A-1 A0 0 A0, A-11, A-12, A-13, …, A-19

A-11, A0, A-13, A-14, A-15 1, 0, 3, 4, 5

Optional context diagram. Defined
as parent of A0 diagram.

A-0 A0 0 A0

A0 0

Required context diagram.

Defined as primary parent of A0
diagram.

A0 A1, A2,
A3 A4,
A5, A6
A7, A8,

A9
i

1, 2, 3

4, 5, 6

7, 8, 9

A1, A2, A3, …, A9

A1, A2, A3, A4, A5 1, 2, 3, 4, 5

Required decomposition diagram.

a
A diagram identified by a predefined diagram number shall contain a box to model the function whose node number is given in the second
column. This box shall have the box number given in the third column. For example, diagram A-2 will contain a box with the box number
-1 to represent function A-1.

b
Each predefined node number is associated with the specific diagram whose diagram number is given in the first column. For example,
function A-4 may only be represented by a box in diagram A-5.

c
Each predefined node number identifies a function that is defined as the parent of the diagram with the predefined diagram number in the
first column of the next row. The only exception to this pattern is function A0 for the A-1 diagram, which is defined as a parent of the A0
diagram. The A-1 diagram is not a parent of the A-0 diagram, and the A0 function is not a parent of the A-0 diagram. For example,
function A-7 is defined as the parent of diagram A-7, and conversely, the context diagram A-7 is defined as the decomposition of function
A-7.

d
The box for a function with predefined node number shall be found in the specific diagram whose diagram number is given in the first
column. For example, the box number -2 will be used only in diagram A-3.

e
A node numbers in bold type indicates a function that must be modeled by a box in the diagram identified by the diagram number in the
first column.

f
A minimum of two functions must be modeled by boxes in a diagram (see 9.1). For optional context diagrams, one of these functions shall
be the function with the highlighted node number. See the column Example Box Numbers in Diagram for examples of these required
substitutions.

g
For the purposes of these examples, a typical diagram is assumed to contain 5 boxes. The box to represent the required function in these
examples has been chosen randomly.

h
The A-9 function implied by diagram number A-9 is never actually modeled by a box in an IDEF0 model.

i
By strict construction, these node numbers should be: A01, A02, A03, A04, A05, A06, A07, A08, A09. However, the zero is omitted by
IDEF0 conventions.

IEEE
Std 1320.1-1998 IEEE STANDARD FOR FUNCTIONAL MODELING

Copyright © 1998 IEEE. All rights reserved.34

10.1 Box numbers

A box number (see 5.1) is an expression that uniquely identifies a box within a given diagram. Every box
in a diagram is assigned a box number that is unique within that diagram. The IDEF0 box numbering
scheme is designed to allow recursive construction of node numbers by concatenating a box number to a
diagram number. These box numbers are also used to cross-reference information in accompanying model
pages to boxes in a diagram.

a) A-0 context diagram. The box number 0 is assigned by the IDEF0 language to any box that
represents the A0 function of a model. Thus, the box number 0 shall be assigned to the single box
representing the function A0 in the A-0 context diagram.

b) Decomposition diagrams. Boxes in a decomposition diagram shall be sequentially assigned box
numbers from the series of integer numbers 1 through 9. Since boxes are normally arranged
diagonally from the top left corner to the bottom right corner of a diagram, box numbers shall be
assigned in sequence, starting with box number 1 for the box at the top left of a diagram. If off-
diagonal boxes are also used, the numbering sequence shall start with the on-diagonal boxes and
then continue, from the lower right, in counter-clockwise order. For example, should there be four
boxes in a decomposition diagram, counting from the diagram’s upper left corner, the box numbers
of these boxes would form the following sequence: 1, 2, 3, 4.

c) Optional context diagrams. A box that represents the A0 function or one of its lineal ancestors in
an optional context diagram may be any box in that diagram. As with decomposition diagrams,
box numbers in an optional context diagram shall be assigned in sequence, starting with box
number 1 for the box at the top left of the diagram. However, as specified in Table 1, the
appropriate predefined negative box number shall replace the box number of the box that
represents the A0 function or its ancestor. The other boxes in an optional context diagram retain
their expected box numbers. For example, should an ancestor to the A0 function be represented by
the third box of four in an A-6 context diagram, counting from the diagram’s upper left corner, the
box numbers assigned to these boxes would form the following sequence: 1, 2, -5, 4.

10.2 Node numbers

A node number is an expression that uniquely identifies a function and its position in a model hierarchy.
A node number is normally formed by concatenating a diagram number and a box number. The diagram
number identifies the diagram in which the function is represented as a box. The box number identifies
that box in the diagram. See Table 1 for the definition of exceptional cases.

a) Node letter. The first character of a node number is a node letter. (This node letter distinguishes
node numbers from box numbers in the A-0 and A0 diagrams.) Conventionally, the node letter
used in IDEF0 models is an uppercase “A”. However, a node letter may be any uppercase
alphabetic character. Within a single model, the selected node letter shall be used for all node
numbers. In a set of related models, different node letters may be used to construct the node
numbers of different models. Alternative decompositions invoked by a call arrow are considered
different submodels and, as such, the node numbers of each submodel may begin with a different
node letter. (Because a diagram number is defined in terms of node numbers, a diagram number
begins with the same node letter that is used to construct node numbers for a model.)

b) A-0 context diagram. The node number A0 is assigned by the IDEF0 language to the function
represented by box 0 in the A-0 context diagram.

c) Decomposition diagrams. The node number for a function in a decomposition diagram shall be
constructed by appending a box number to a diagram number. The box number shall identify the
box that represents the function. This diagram number shall identify the decomposition diagram
that contains this box. For example, should a function be detailed by five boxes in diagram A19,
the node number of the function represented by box 2 in this decomposition diagram will be A192.

IEEE
SYNTAX AND SEMANTICS FOR IDEF0 Std 1320.1-1998

Copyright © 1998 IEEE. All rights reserved. 35

Strictly following this construction of node numbers, the functions represented by the boxes in the
A0 diagram would be given the node numbers A01, A02, A03, …, A09. However, by IDEF0
convention, the leading numeral zero is always omitted from the node numbers of these functions.
Thus, the node numbers of functions in the A0 diagram shall be A1, A2, A3, …, A9.

d) Optional context diagrams. For a function other than the A0 function or one of its lineal ancestors,
the node number for a function in an optional context diagram shall be constructed by appending a
box number to a diagram number, just as a node number is determined for a function in a
decomposition diagram. The box number shall identify the box that represents the function. The
diagram number shall identify the context diagram that contains this box. However, as specified in
Table 1, the appropriate negative node numbers shall be assigned to the A0 function and its lineal
ancestors, i.e., to those functions represented by boxes with negative box numbers in optional
context diagrams. For example, the grandfather of the A0 function will be assigned the node
number A-2. Should this grandfather function be represented by the second box in diagram A-3,
the node number of the function represented by the first box in this diagram will be A-31.

10.3 Diagram numbers

A diagram number is an expression that uniquely identifies a diagram and its hierarchic position within
an IDEF0 model. If a diagram has a parent function, the node number of the diagram’s parent function
shall be assigned as the diagram number of the diagram.

Certain context diagrams in an IDEF0 model that do not have a parent function and thus have no
corresponding parent node number. The IDEF0 language provides diagram numbers for these diagrams.
These predefined diagram numbers are specified in Table 1.

a) A-0 context diagram. The diagram number A-0 is assigned by the IDEF0 language to the required
context diagram that contains only one box, box 0, to represent a model’s A0 function. This
number is the only diagram number in an IDEF0 model that may not be used to construct node
numbers.

b) Decomposition diagrams. The node number of a decomposition diagram’s parent function shall be
assigned as the diagram number for the diagram. For example, the diagram number of the
decomposition diagram that details function A47 is simply A47.

c) Optional context diagrams. For an optional context diagram that has a parent function in a parent
context diagram, the node number of this parent function shall be assigned as the diagram number
for the diagram, just as a diagram number is determined for a decomposition diagram. However,
an optional context diagram that does not have a parent function shall be assigned the appropriate
predefined negative diagram number as specified in Table 1. For example, an optional context
diagram that details some function A-15, represented by box 5 on diagram A-1, would be assigned
the diagram number A-15. However, the diagram number A-1 is assigned to the optional context
diagram that contains box 0 as specified in Table 1.

d) Diagram numbers vs. node numbers. A function is identified by its node number while a diagram
is identified by its diagram number. While diagram numbers and node numbers are designed to
look alike and while the set of node numbers and the set of diagram numbers in a model largely
overlap, diagram numbers and node numbers differ in critical ways. First, diagram numbers
include the predefined diagram numbers for context diagrams that do not have parent functions.
Second, node numbers include node numbers constructed for leaf nodes, which do not have
decomposition diagrams. As a result, the set of node numbers will be from two to nine times larger
than the set of diagram numbers for a given IDEF0 model.

Table 2 illustrates the diagram numbers, node numbers, and box numbers that may be found in a
typical IDEF0 model.

IEEE
Std 1320.1-1998 IEEE STANDARD FOR FUNCTIONAL MODELING

Copyright © 1998 IEEE. All rights reserved.36

Table 2—Diagram, function, and box reference examples

Diagram numbers:
diagrams

Box numbers:
boxes

Node numbers: functions Comments

Optional high-level context diagrams

A-93 1, 2, …, 9 A-931, A-932, …, A-939 Optional context diagram

A-4134 1, 2, …, 9 A-41341, A-41342, …, A-41349 Optional context diagram

A-2 1, -1, 3, …, 9 A-21, A-1, A-23, …, A-29 Optional context diagram

A-26 1, 2, …, 9 A-261, A-262, …, A-269 Optional context diagram

A-1 1, 2, 0, 4, …, 9 A-11, A-12, A0, A-14, …, A-19 Optional context diagram (contains box 0
representing the A0 function)

A-14 1, 2, …, 9 A-141, A-142, …, A-149 Optional environmental context diagram

A-0 0 A0 Required context diagram (contains box 0
representing the A0 function)

A0 1, 2, …, 9 A1, A2, …, A9 Required decomposition diagram

A1, A2, …, A9 1, 2, …, 9 A11, A12, …, A19, …,

A91, A92, …, A99

Possible decomposition diagrams

A1 1, 2, …, 9 A11, A12, …, A19 Decomposition diagram

A5 1, 2, …, 9 A51, A52, …, A59 Decomposition diagram

A11, A12, …, A19, …,
A91, A92, …, A99

1, 2, …, 9 A111, A112, …, A199, …,

A911, A912, …, A999

Possible decomposition diagrams

A32 1, 2, …, 9 A321, A322, …, A329 Decomposition diagram

A49 1, 2, …, 9 A491, A492, …, A499 Decomposition diagram

A61 1, 2, …, 9 A611, A612, …, A619 Decomposition diagram

A63 1, 2, …, 9 A631, A632, …, A639 Decomposition diagram

A87 1, 2, …, 9 A871, A872, …, A879 Decomposition diagram

A111, A112, …, A199,
…, A911, A912, …, A999

1, 2, …, 9 A1111, A1112, …, A1999, …,
A9111, A9112, …, A9999

Possible decomposition diagrams

A125 1, 2, …, 9 A1251, A1252, …, A1259 Decomposition diagram

A153 1, 2, …, 9 A1531, A1532, …, A1539 Decomposition diagram

A211 1, 2, …, 9 A2111, A2112, …, A2119 Decomposition diagram

A639 1, 2, …, 9 A6391, A6392, …, A6399 Decomposition diagram

A762 1, 2, …, 9 A7621, A7622, …, A7629 Decomposition diagram

Possible further decomposition diagrams

A1111 1, 2, …, 9 A11111, A11112, …, A11119 Decomposition diagram

A2451 1, 2, …, 9 A24511, A24512, …, A24519 Decomposition diagram

A46223 1, 2, …, 9 A462231, A462232, …, A462239 Decomposition diagram

A999999 1, 2, …, 9 A9999991, A9999992, …,
A9999999

Decomposition diagram

10.4 Node tree

The developed IDEF0 model with its structured decomposition provides the basis to describe the full
decomposition as a node tree on a single FEO page. A node tree is not required for a valid IDEF0 model.
The content of a node tree shall be identical to that of a node index prepared for the same model (see
10.5).

There is no standard format for the display of node information in a node tree, except that the model
hierarchy shall be shown graphically as a tree rooted at a chosen node (e.g., the A0 function for a whole
model). Figure 42 illustrates such a tree.

IEEE
SYNTAX AND SEMANTICS FOR IDEF0 Std 1320.1-1998

Copyright © 1998 IEEE. All rights reserved. 37

10.5 Node index

The node index presents a node tree in the format of a document outline. Each node number, with either
its corresponding diagram title or function name, shall be presented in an indented form that exhibits the
nested hierarchic structure of the model. This places related diagrams together in an order often used to
create an ordinary Table of Contents, as is illustrated in Figure 43.

10.6 Diagram references

A diagram reference is an expression that uniquely identifies a diagram and its position in the model
hierarchy of a specific model. A diagram reference shall be constructed by putting a model name
abbreviation and a slash (“/”) character in front of a diagram number. For example, the diagram reference
for the A312 diagram in a model known by the model name abbreviation QA would be QA/A312.
References to a diagram in the same model may omit the model name abbreviation, using only the
diagram number.

10.7 Page references

A page reference is an expression that uniquely identifies each model page in an IDEF0 model and links
each model page to a specific IDEF0 diagram. A page reference shall be constructed by appending page
type letters and, as required, sequence numbers to a diagram reference. A page type letter is an uppercase
letter that denotes a specific type of model page. The page type letters “D” for diagram, “F” for FEO, “T”
for text, “G” for glossary, and “K” for kit shall be used to denote these defined types of model pages.
Other page type letters may be defined with meanings and usage specific to given models and modeling
projects.

If there is more than one model page of a specific type associated with a given diagram or other model
page, the model pages within that type shall be distinguished by a sequence number following the page
type letter. For example, the page reference for a single text page associated with the diagram MDL/A33
might be MDL/A33T. The page reference for this same text page after additional text pages have been
added to discuss diagram A33 would become MDL/A33T1. The page reference for the third FEO page
associated with diagram A321 in model QA would be QA/A321F3, where QA/A321 is the diagram
reference, F is the page type letter, and 3 is the sequence number.

If a page reference does not show an explicit sequence number, the sequence number is assumed to be 1. If
a page reference does not show an explicit page type letter, the page type letter is assumed to be D and the
model page is assumed to be a diagram page. Thus, a diagram reference and the page reference for that
diagram are consistent; MJN/A473D1 and MJN/A473 are equivalent page references.

Except for a diagram page, in general, any type of model page may supplement any other type of model
page. For example, given diagram A42 in model QRK, there may be a glossary page that defines terms
used in the second text page that explains the third FEO page that supplements this diagram. The fully
expanded page reference for this glossary page would be QRK/A42D1F3T2G1. The slightly shorter
QRK/A42F3T2G is an equivalent page reference.

11. IDEF0 diagram feature references

A standard notation shall be used in writing to refer to specific parts of diagrams. These diagram feature
references are based on box numbers, ICOM codes, and note numbers. Diagram feature references may be
combined with diagram references using “dot notation,” that is, by concatenating a diagram-based
reference, a period (the “dot”), and a diagram feature reference. Such diagram.feature (read “diagram-
see-feature”) references are illustrated in Tables 3 through 6.

IEEE
Std 1320.1-1998 IEEE STANDARD FOR FUNCTIONAL MODELING

Copyright © 1998 IEEE. All rights reserved.38

a) Box references. An activity box is referenced by its box number. Dot notation may join a box
number to a diagram reference to make a diagram.box reference (see Table 3).

Table 3—Reference notation for box references

Reference Example Interpretation

box number 3 Specifies a box in the current diagram of the current model. The
example 3 refers to the box with box number 3. This example may be
read as “box 3” or “the activity modeled by box 3.”

Often italicized in text; for example, “The name in 3 should not differ
in font size from other box names in the diagram,” which refers to a
box, or “The name of 3 should reflect the activity’s purpose rather
than the inputs it consumes,” which refers to a function.

diagram.box A42.3 Specifies a box in a specific diagram of the current model. The
example A42.3 refers to the box with box number 3 in diagram A42
of the current model. This example may be read as “in diagram A42,
see box number 3” or as “see activity A423.”

diagram.box MFG/A42.3 Specifies a box in a specific diagram of a specific model. The
example MFG/A42.3 refers to the box with box number 3 in diagram
A42 of the model MFG. This example may be read as “see box 3 in
diagram A42 of the model abbreviated MFG” or as “in the
Manufacturing model, see function A423.”

b) ICOM codes (box/arrow references). A box/arrow reference is either a boundary ICOM code or a
box ICOM code. Dot notation may join either form of ICOM code to a diagram reference to form a
diagram.icom reference. A diagram.icom reference is also known as a complete ICOM code (see
Table 4).

Table 4—Reference notation for ICOM codes

Reference Example Interpretation

boundary ICOM code I2 Strictly, specifies the ordinal attachment of some arrow to a specific
side of the parent box that is detailed by the current diagram of the
current model. Interpreted strictly, the example I2 refers to the
second arrow attached to the input side of the box that is detailed by
the current diagram of the current model. This example may be read
as “the second input of the current function.”

Loosely, identifies the boundary arrow that maps to an arrow
attached, at the specified ordinal position, to a specific side of the box
that is detailed by the current diagram of the current model.
Interpreted loosely, the example I2 refers to the boundary arrow that
maps to the second input arrow attached to the box that is parent to
the current diagram of the current model. This example may be read
as “the boundary arrow I2.”

A boundary ICOM code is a complete ICOM code that assumes that
the unspecified box is the parent box detailed by the current diagram,
that the unspecified diagram is the current diagram’s parent diagram,
and that the unspecified model is the current model.

IEEE
SYNTAX AND SEMANTICS FOR IDEF0 Std 1320.1-1998

Copyright © 1998 IEEE. All rights reserved. 39

Table 4—Reference notation for ICOM codes (Continued)

Reference Example Interpretation

diagram.icom reference

or

complete ICOM code

A42.I2 Specifies the ordinal attachment of some arrow to a specific side of
the parent box that is detailed by a specific diagram of the current
model. The example A42.I2 refers to the second arrow attached to the
input side of diagram A42’s parent box. This example may be read as
“the second input of the function detailed in diagram A42,” or simply
as “in diagram A42, see the boundary arrow I2.”

diagram.icom reference

or

complete ICOM code

MFG/A42.I2 Specifies the ordinal attachment of some arrow to a specific side of
the parent box that is detailed by a specific diagram of a specific
model. The example A42.I2 refers to the second arrow attached to the
input side of diagram A42’s parent box in the model with the
abbreviated name MFG. This example may be read as “the second
input of the function detailed in diagram A42 of model MFG,” or
simply as “in diagram A42 of MFG, see the boundary arrow I2.”

box ICOM code 3I2 Strictly, specifies the ordinal attachment of some arrow to a specific
side of a specific box in the current diagram of the current model.
Interpreted strictly, the example 3I2 refers to the attachment of the
second arrow, counting from the top, to the left or input side of box 3
in the current diagram of the current model. This example may be
read as “box 3, input 2.”

Loosely, identifies the arrow that is attached, at the specified ordinal
position, to a specific side of a specific box in the current diagram of
the current model. Interpreted loosely, the example 3I2 refers to the
second input arrow attached to box 3 in the current diagram of the
current model. This example may be read as “the arrow attached at
3I2.”

A box ICOM code is a complete ICOM code that assumes that the
unspecified diagram is the current diagram and that the unspecified
model is the current model.

diagram.icom reference

or

complete ICOM code

A42.3I2 Specifies the ordinal attachment of an arrow to a specific side of a
specific box in a specific diagram of the current model. The example
A42.3I2 refers to the second arrow attached to the left or input side of
box 3 in diagram A42 of the current model. This example may be
read as “in diagram A42, see the second input to box number 3.”

diagram.icom reference

or

complete ICOM code

MFG/A42.3I2 Specifies the ordinal attachment of an arrow to a specific side of a
specific box in a specific diagram of a specific model. The example
MFG/A42.3I2 refers to the second arrow attached to the left or input
side of the box with box number 3 in diagram A42 of the model
abbreviated MFG. This example may be read as “see box 3, input 2,
in diagram A42 in model MFG.”

c) Arrow references. An arrow reference consists of one or more ICOM codes that together
unambiguously identify an arrow, an arrow segment, or an arrow path. Dot notation may join an
arrow reference to a diagram reference to form a diagram.arrow reference (see Table 5).

IEEE
Std 1320.1-1998 IEEE STANDARD FOR FUNCTIONAL MODELING

Copyright © 1998 IEEE. All rights reserved.40

Table 5—Reference notation for arrow references

Reference Example Interpretation

arrow reference 3I2 See Table 4.

As an arrow reference, the example 3I2 refers to the arrow segment
attached as specified by the box ICOM code I2 in the current diagram
of the current model. This example may be read as “the arrow
attached at 3I2” or “the second input to box 3.”

arrow reference 2O3 to 3I2

or

2O3:3I2

Specifies the internal source and the internal use of an arrow in the
current diagram of the current model. The example 2O3 to 3I2 refers
to the arrow that connects the third output of box 2 to the second
input of box 3. This example may be read as “the branch of the third
output arrow of box number 2 that provides the second input for box
3.”

diagram.arrow reference A42.2O3 to 3I2

or

A42.2O3:3I2

Specifies the source and the use of an arrow in a specific diagram of
the current model. The example A42.2O3 to 3I2 refers to the arrow
that connects the third output of box 2 to the second input of box 3 in
diagram A42 of the current model. This example may be read as “in
diagram A42, see the arrow that starts as the third output of box 2
and ends as the second input of box 3.

arrow reference I2 See Table 4.

As an arrow reference, the example I2 refers to the boundary arrow
attached to boundary ICOM code I2 and all its branches in the
current diagram of the current model. This example may be read as
“the boundary arrow I2.”

arrow reference I2 to 3I2

or

I2:3I2

Specifies the external source and the internal use of an arrow in the
current diagram of the current model. The example I2:3I2 refers to
the arrow that connects the second input of this diagram’s parent box
to the second input of box 3 in the current diagram of the current
model. This example may be read as “the branch of I2 that is the
second input of box 3.”

arrow reference 3O1 to O3

or

3O1:O3

Specifies the internal source and the external use of an arrow in the
current diagram of the current model. The example 3O1 to O3 refers
to the arrow in the current diagram of the current model that connects
the first output of box 3 to the third output of this diagram’s parent
box. This example may be read as “the first output arrow of box 3,
which becomes the third output of this diagram’s parent box.”

INVALID REFERENCE I2 to O3

nor

I2:O3

Each boundary input arrow shall be transformed by some function in
that diagram. Each boundary output arrow shall be the product of a
transformation by some function in that diagram. No arrow may
traverse a diagram directly from one boundary ICOM to another
boundary ICOM.

arrow path reference I2 to 3I2 to 3O1
to (4C1 and 5C2)

or

I2:3I2:3O1
:(4C1,5C2)

Specifies a sequence of arrows from an initial source to a final use
through intermediate uses and sources. The example refers to three
arrows (I2 to 3I2, 3O1 to 4C1, and 3O1 to 5C2) that trace a path from
the initial source (I2) to two final uses (4C1 and 5C2). Box 3 is the
intermediate use (3I2) and source (3O1). This example may be read
as “from the boundary arrow with ICOM code I2 to box 3, input 2,
through the activation of box 3 that yields output 1, to the availability
via branching of that output as control 1 on box 4 and control 2 on
box 5.

IEEE
SYNTAX AND SEMANTICS FOR IDEF0 Std 1320.1-1998

Copyright © 1998 IEEE. All rights reserved. 41

d) Note references. A note reference is either a model note number or a reader note number. Dot
notation may join either note number to a diagram reference to form a diagram.note reference (see
Table 6a and Table 6b).

Table 6a—Reference notation for model note references (normative)

Reference Example Interpretation

model note number 3 Specifies a model note on the current diagram of the current model.

The example 3 refers to the model note with the model note
number 3 in the current diagram of the current model. This example
may be read as “model note 3.”

This notation for a model note number shall be used in a diagram to
designate a model note. This notation may also be used in reference
expressions.

model note number
(reference-only notation)

|3| This alternate notation may be used only in reference expressions.
This notation shall not be used in a diagram as a model note number.
The example |3| refers to model note 3, just as the model note
reference of the previous example.

diagram.note reference A42. 3 Specifies a model note in a specific diagram of the current model.

The example A42. 3 refers to the model note with the model note
number 3 in diagram A42 of the current model. This example may be
read as “in diagram A42, see model note number 3.”

diagram.note reference MFG/A42.|3| Specifies a model note in a specific diagram of a specific model. The
example MFG/A42.|3| refers to the model note with the model note
number 3 in diagram A42 of the model MFG. This example may be
read as “see the third model note in diagram A42 of the model
MFG.”

Table 6b—Reference notation for reader note references (informative)

Reference Example Interpretation

reader note number ® Specifies a reader note on the current diagram of the current model.

The example ® refers to the reader note with the reader note
number 3 on the current diagram of the current model. This example
may be read as “reader note 3.”

This notation for a reader note number shall be used on a diagram to
designate a reader note. This notation may also be used in reference
expressions.

reader note number
(reference-only notation)

(3) This alternate notation may be used only in reference expressions.
This notation shall not be used on a diagram as a reader note number.

diagram.note reference A42.(3) Specifies a reader note on a specific diagram of the current model.
The example A42.(3) refers to reader note 3 on diagram A42 of the
current model. This example may be read as “see reader note 3 on
diagram A42.”

diagram.note reference MFG/A42.® Specifies a reader note on a specific diagram of a specific model. The
example MFG/A42.® refers to reader note 3 on diagram A42 of the

model MFG. This example may be read as “on diagram A42 of the
model MFG, see reader note number 3.”

IEEE
Std 1320.1-1998 IEEE STANDARD FOR FUNCTIONAL MODELING

Copyright © 1998 IEEE. All rights reserved.42

Annex A

(informative)

Bibliography

[B1] IEEE Std 1320.2-1998, Standard for Conceptual Modeling Language—Syntax and Semantics for
IDEF1X97 (IDEFobject).

[B2] FIPS PUB 183, Integration Definition for Function Modeling (IDEF0), National Institute for
Standards and Technology, December 1993.

[B3] FIPS PUB 184, Integration Definition for Information Modeling (IDEF1X), National Institute for
Standards and Technology, December 1993.

IEEE
SYNTAX AND SEMANTICS FOR IDEF0 Std 1320.1-1998

Copyright © 1998 IEEE. All rights reserved. 43

Annex B

(informative)

IDEF0 language: abstract formalization

B.1 IDEF0 abstract syntax

This annex presents a mathematical formalization of the syntax of the IDEF0 function modeling method.
A formal syntax determines exactly the class of well-formed constructs of the language and hence
unambiguously answers the question of whether any given construction is syntactically legitimate. The
abstract formalization itself consists chiefly of a series of mathematical definitions. However, the bulk of
this annex consists of informal exposition to clarify and motivate the unadorned definitions.

This annex presents a formal specification of the syntax of the IDEF0 modeling language. The syntax is
an abstract syntax, in the sense that it is presented at a high level of abstraction applicable to any
particular form of representation for an IDEF0 model, whether the traditional graphical syntax or a
“linear” equivalent in a logical language like the knowledge interchange format (KIF). This capacity in
turn supports enterprise model integration, not only within the IDEF suite of methods, but also with
regard to other modeling methods [e.g., entity relationship (ER), NIAM] and other naming conventions,
both within and across enterprise contexts.

In general, an IDEF0 diagram can be thought of as a certain kind of mathematical object known as a
graph. Intuitively, a graph is any collection of objects that are linked or connected together in some way.
Objects so linked are said to be adjacent. It is not necessary that every object in the set be linked to some
other object; any way of linking some of the objects in a given set to other (possibly the same) objects in
the set is an acceptable graph. Pictorially, one can think of a (finite) graph as the result of starting with
some set of dots on a sheet of paper and drawing lines between pairs of dots (no more than one line per
pair of dots) or from a dot to itself (no more than one per dot). Formally, graphs are represented by listing
these two aspects of a graph separately: the set of objects—more correctly known as its vertices—and the
set of links—more correctly known as its edges.5 Because the nature of an edge in an ordinary graph is
irrelevant beyond the fact that it links the particular vertices that it does, and because there can be only
one edge from one vertex to another in a graph, an edge between one vertex N1 and another N2 is usually
represented simply as the unordered set {N1,N2} consisting of exactly those two vertices. (Graph-like
structures that permit multiple edges between vertices are called multigraphs.) Two vertices N1 and N2
are thus adjacent in a graph if and only if the set {N1,N2} is an edge in the graph.

When the edges of a graph have an associated direction, so that one can speak of an edge extending from
one vertex to another (as opposed to simply linking two vertices), the graph is known as a directed graph.
(In terms of the pictorial analogy above, envision changing all the lines in the picture to arrows with one
arrowhead.) Because the element of directionality adds a little more richness to the notion of an edge, it is
now possible for there to be two edges between vertices; these edges must, however, “point” in different
directions. That is, it is permissible to have an edge from N1 to N2, and from N2 back to N1. It is not,
however, permissible to have more than one edge from N1 to N2. (Structures that permit more than one
such edge are called directed multigraphs.)

5Vertices and edges are also commonly known as nodes and arcs, respectively. However, the term “node” has an entrenched meaning in
IDEF0 and so it will not be used it here; thus, “arc” is also avoided because it is usually paired with “node.”

IEEE
Std 1320.1-1998 IEEE STANDARD FOR FUNCTIONAL MODELING

44 Copyright © 1998 IEEE. All rights reserved.

Formally, the directedness of an edge is captured by ordering the pair of vertices the edge connects.
Ordering is done simply by representing a directed edge from N1 to N2 as the ordered pair 〈〈 N1,N2 〉〉,
instead of the unordered set {N1,N2}. The direction of the edge is represented by the order of the vertices.
Given this definition (since ordered pairs are identical if and only if (iff) they have the same first and
second elements), it is clear that there can be no more than one edge from one vertex N1 to another N2.

In this formalization, an IDEF0 diagram (i.e., the content of a single diagram page in an IDEF0 model) is
defined to be a special type of directed graph. A possible misconception must be avoided, however.
Because it is common to represent directed edges in a graph as arrows, it is natural—initially at any
rate—to think of an IDEF0 diagram as a graph whose vertices are the boxes of the diagram and whose
edges are the arrows that connect them. For a number of good reasons—for instance, the complex ways in
which arrows can branch and join in an IDEF0 diagram, and the fact that some arrows do not connect to
any box at one end—this is not how IDEF0 diagrams are modeled in this formalization. Rather, in this
formalization, the vertices of an IDEF0 diagram comprise not only boxes, but arrows—more exactly, the
arrow segments that constitute them—and the junctions at which arrows branch and join as well. The
edges of the diagram, rather than representing arrows, represent the points at which arrows segments
connect to boxes and junctions. Because there are six types of connection (represented in standard IDEF0
diagrams by which side of a box an arrow segment connects to, and by branching and joining), edges
come in six “flavors”—input, control, output, mechanism, junction-input, and junction-output.

Because IDEF0 diagrams are representations that carry information, they are naturally thought of as
expressions in a language. Typically, a language has two components: a lexicon and a grammar. The
lexicon comprises the basic building blocks of the language, and the grammar provides the rules by which
complex representations are constructed from those building blocks. The lexicon is defined as follows:

Definition 1. IDEF0 lexicon

An IDEF0 lexicon L is a triple 〈〈B,S,J〉〉 such that B, S, and J are pairwise disjoint
countable infinite sets. The elements of B are called boxes, the elements of S are called
arrow segments, and the elements of J are called junctions.

Intuitively, B and S will be the formal counterparts of the boxes and arrow segments of an IDEF0
diagram. Unlike boxes and arrow segments, junctions are not specific modeling objects in a traditional
IDEF0 diagram, but rather are simply points of contact between arrow segments. However, it proves to
be very useful for the semantical purposes to represent junctions explicitly, as will be seen below, as
they function semantically much like boxes. B, S, and J are stipulated to be pairwise disjoint6 because,
of course, boxes, arrow segments, and junctions are all different sorts of things. It is stipulated that all
three sets are infinite so that there are enough basic elements to build arbitrarily large (but nonetheless
finite) models.

The grammar is the more complex element of a language. The following is the key definition for the
IDEF0 language:

Definition 2. IDEF0 graph

Let L== 〈〈B,S,J〉〉 be an IDEF0 lexicon. An IDEF0 graph (in L) is a finite directed graph
G== 〈〈VG ,EG 〉〉 such that VG == ²² 77BG,SG,JG ?? , where BG

⊆⊆ B, SG
⊆⊆ S, and JG

⊆⊆ J, and
EG = = ²² 77 IG,CG,OG ,MG,LG,RG ?? , where IG , CG , and MG are pairwise disjoint subsets
of SG ×× BG , OG

⊆⊆ BG ×× SG , LG
⊆⊆ SG ×× JG , and RG

⊆⊆ JG ×× SG satisfying these conditions:

6A set M of sets is pairwise disjoint if and only if any two distinct members of M are disjoint, i.e., have no members in common.

IEEE
SYNTAX AND SEMANTICS FOR IDEF0 Std 1320.1-1998

Copyright © 1998 IEEE. All rights reserved. 45

(1) EG is functional on ²² 77 IG,CG,MG,LG ?? , that is, if 〈x,y〉∈∈EG and 〈x,z〉∈∈EG, then
either y== z or both 〈x,y〉,〈x,z〉∈∈²² 77OG ,RG ?? ;

(2) EG
-1 is functional on ²² 77OG ,RG ?? , that is, if 〈y,x〉∈∈EG and 〈z,x〉∈∈EG, then either

y== z or both 〈y,x〉∈∈²² 77 IG,CG,MG,LG ?? and 〈z,x〉∈∈²² 77 IG,CG,MG,LG ?? ; and

(3) For all j∈∈ JG , there are distinct s, ś , ś ́such that either LGsj, LG ś j, and RG jś ́or
LGsj, RG jś , and RG jś .́

In Condition (3), in the first case j is known as a join and in the second case as a branch.

NOTE—Henceforth, “EGxy,” “IGxy,” etc., will usually be written instead of “〈〈x,y〉〉∈∈EG,” “〈〈x,y 〉〉∈∈IG,” etc.
Sometimes “x→→ Gy” will be used instead of “〈〈x,y〉〉∈∈EG.” Where the graph G is understood, the subscript “G” on
an arrow will sometimes be omitted. It will be assumed henceforth that the lexicon L is fixed.

As noted above, in terms of standard graphical IDEF0 diagrams, edges represent the connection itself,
or “interface,” between an incoming arrow segment and a box or junction, or a box or junction and an
outgoing arrow segment. IG , CG , OG , and MG represent of course the four different ways that an
arrow segment can connect to a box. LG represents the relation between an arrow segment s and a
junction j when s connects to j “on the left,” and RG represents the relation between a junction j and an
arrow segment s when s connects to j “on the right.” The details of the definition place certain
constraints on the structure of legitimate IDEF0 graphs. There are two sets of constraints.

The first set of constraints—the stipulation that IG , CG , MG
⊆⊆ SG ×× BG and are pairwise disjoint,

OG
⊆⊆ BG ×× SG , LG

 ⊆ ⊆ SG ×× JG , and RG
⊆⊆ JG ×× SG—constrains the pairs of vertices that can be

connected by each type of edge: input, control, and mechanism edges must join arrow segments to
boxes, output edges must join boxes to arrow segments, and junction edges must join arrow segments to
arrow segments.

The second set of constraints—the listed Conditions (1) through (3)—are the minimal conditions on
IDEF0 graphs that are imposed simply by the geometry of traditional IDEF0 diagrams. Thus, Condition
(1) entails that an input arrow segment for a given box cannot also be an input (or control or
mechanism) arrow segment for some other box; nor could it be an incoming segment to some junction.
(Restricting EG ’s functionality only to ²² 77 IG ,CG ,MG ,LG ?? , however, does allow boxes and junctions to
have more than one outgoing arrow.) Condition (2) is the same condition in reverse for outgoing arrow
segments, and thus entails that an output arrow segment for a given box cannot also be an output arrow
for any other box. Condition (3) ensures that, for any given junction j, there must be either multiple
arrow segments coming into j or multiple outgoing arrow segments going out of j, but not both. The
first part of this condition ensures that junctions occur only when several arrow segments join or branch
(so, in particular, there are no junctions involving only one segment on the left and one segment on the
right), and the second part ensures that no junction can be both a branch and a join.

By the definition of EG , no arrow segment in an IDEF0 graph G is adjacent to any other. Since there
are no edges in EG whose first and second elements are both from SG , there are no elements of
SG ×× SG in EG .

The following figures will be used to illustrate Definition 2 and the definitions introduced below:

 Figure 44 is a box-and-arrow skeleton of a simple IDEF0 diagram, with unique names assigned to
boxes and arrow segments.

NOTE—These names are only tags for the distinct syntactic components of the diagram to illustrate the
formal definitions being presented here; they are not to be thought of as names for concepts and activities
associated semantically with these elements as in an actual IDEF0 diagram.)

IEEE
Std 1320.1-1998 IEEE STANDARD FOR FUNCTIONAL MODELING

46 Copyright © 1998 IEEE. All rights reserved.

 Figure 45 is a graph theoretic representation of that diagram. In the diagram, the type of an
incoming or outgoing arrow segment is of course indicated geometrically by the point at which it
joins the corresponding box. In the graph, junctions and arrow segments, like boxes, are
represented as vertices, and the type of the arrow segment vertex with respect to an adjacent box or
junction is indicated explicitly by a label on the edge connecting them.

Definition 3. Path

Let G== 〈〈VG ,EG 〉〉 be a graph. A path in G is a sequence of vertices (i.e., members of VG)
〈〈y1 ,...,yn 〉〉 such that for all i<< n (i>> 0), yi→→ yi+1 . The path is said to traverse each yi .
The length of a path 〈〈y1 ,...,yn 〉〉 is n−− 1 .

Definition 4. Cycle

A path 〈〈y1 ,...,yn 〉〉 in G is a cycle iff n>> 1 and y1== yn .

Definition 5. Successor

x is a successor (predecessor) of y in G iff there is a path from y to x (x to y). x is an
immediate successor (predecessor) of y in G iff x→→ y (y→→ x).

Definition 6. Complete path

A path p== 〈〈y1 ,...,yn 〉〉 is complete in G iff y1 has no immediate predecessor in G and yn
has no immediate successor in G.

A path between two vertices N1 and N2 is just that: a way of getting from N1 to N2 by following edges,
heeding their direction. Thus, in the graph in Figure 45, there is a path from s1 to s4 that, in addition
to those two vertices, traverses b1, s2, b2, s3, and b3. Formally, paths are represented simply by listing
the sequence of vertices one must traverse along the path, beginning with N1 and ending with N2. A
sequence 〈〈N 〉〉 containing only a single vertex N is a perfectly good (if somewhat uninteresting) path of
length 0; it will be important to bear this in mind for the definitions below. There can be more than one
path from one vertex to another. In particular, if there is a cycle in path from N1 to N2, then there are
infinitely many distinct paths from N1 to N2, because one can always cycle as many times as one
pleases before finishing the path. The directed set 〈〈b2,s3,b3,s5, j1,s7, j2,s9,b2〉〉 is a cycle in the graph
in Figure 45. By definition, if x is any element in a cyclic path, then x is both a successor and a
predecessor of itself.

Definition 7. Connected graph

Let G== 〈〈VG ,EG 〉〉 be a graph. Let E*== EG ∪∪ EG
-1 (the set of arcs that connect the nodes in

a graph), and let G*== 〈〈VG ,E* 〉〉. G is connected iff, for all x,y∈∈ VG (the nodes in the
graph), there is a path in G* from x to y.

For example, there is no path from s1 to s10 in Figure 45. One can get from the former node s1 to the
latter node s10 only by traveling “backwards” down one or more edges. Such a journey from one vertex
to another—one that might involve traveling backwards down an edge—is called a walk. A walk is
captured in the definition above essentially by adding, for each edge in the graph from N1 to N2, a
corresponding edge from N2 to N1. This addition is achieved formally by “inverting” all the edges in
EG and results in the set EG

-1 and constructing a new graph G* with the same vertices. The edges of
G* consist of the original edges E together with all the inverted edges EG

-1. (The inverse of 〈〈x,y〉〉, of
course, is 〈〈y,x〉〉.) Intuitively, then, a graph G is connected if and only if there is a way to get from any
vertex in G to any other by traveling either forward or backward along the edges in G.

IEEE
SYNTAX AND SEMANTICS FOR IDEF0 Std 1320.1-1998

Copyright © 1998 IEEE. All rights reserved. 47

Definition 8. Arrow path

An arrow path in G is a path 〈〈y1 ,...,yn 〉〉 such that yi∈∈ SG ∪∪ JG (1## i##n) and such that
y1 ,yn∈∈ SG . An arrow is an arrow path that it is not a subsequence of a larger arrow
path.7

An arrow path in a graph is a path that traverses only arrow segments and junctions. Thus, 〈〈s4 〉〉, 〈〈 s6 〉〉,
〈〈 s5, j1,s7 〉〉, and 〈〈 s5, j1,s7, j2,s9 〉〉 are all arrow paths. Only the first and last, however, are arrows,
because, unlike the second and third arrow paths, neither is contained in a larger arrow path.

Definition 9. Boundary arrows and arrow segments

An outgoing (incoming) boundary arrow is an arrow whose last (first) arrow segment has
no successor (predecessor) in G. A boundary arrow is either an outgoing or incoming
boundary arrow. An outgoing (incoming) boundary arrow segment is an arrow segment
that has no successor (predecessor) in G. A boundary arrow segment is an outgoing or
incoming boundary arrow segment.

Thus, s4 and s6 are outgoing boundary arrow segments; s1, s8, and s10 are incoming boundary arrow
segments. 〈〈 s4 〉〉 and 〈〈 s5, j1,s6 〉〉 are outgoing boundary arrows, and 〈〈 s1 〉〉 and 〈〈 s8, j2,s9 〉〉 are incoming
boundary arrows.

Definition 10. Incoming or outgoing

An arrow segment s in G is incoming (outgoing) with respect to a box or junction e in G
iff s is an immediate predecessor (s is an immediate successor) of e. The arrow segment s
is said to be connected to junction e iff it is either incoming or outgoing with respect to e.
An arrow 〈〈 s1,…,sn 〉〉 in G is incoming (outgoing) with respect to a box b in G iff sn is
incoming (s is outgoing) with respect to b.

Thus, the boundary arrow 〈〈 s8, j2,s9 〉〉 is incoming with respect to b2, and the arrow 〈〈 s3 〉〉 (hence also the
arrow segment s3) is outgoing with respect to b2 and incoming with respect to b3.

Definition 11. Node number

The numbers 0 to 9 and the infinite ordinal number ωω are node numbers; and if n is a

node number >0 but << ωω, then m (10 i)++ n is a node number, where 1##m##9 and i is the

least number such that 10 i##n.

This definition of the notion of a node number is recursive; that is, ignoring ωω for the moment, an
initial base of instances of the notion is provided (the numbers 0 through 9) and then a recursive clause
defines new instances of the notion in terms of instances already given. By iterating the recursive
clause, then, one generates an infinite class of node numbers from the initial base class by, first, picking
a node number n>0 already in one’s possession, finding the first power of ten greater than n,
multiplying that number by one of the initial node numbers (other than 0), and adding that product to
n. This yields the following sequence of numbers: 0, 1, 2, …, 9, 11, 12, …, 19, 21, 22, …, 29, …, 91,
92, …, 99, 111, 112, …, 119, …, 121, 122, …, 129, …, 191, 192, …, 199, 211, …, 299, …, 911, …,
999, 1111, 1112, … 1119, … .

7〈y1,…,yn〉 is a subsequence of 〈x1,…,xm〉 if and only if for some i, j, 1# i, j#m, 〈y1,…,yn〉 = 〈x1,…,xi-1〉^〈xi,…,xj〉^〈xj+1,…,xm〉 (where

〈z1,…,zi〉^〈w1,…,wm〉 is the concatenation of 〈z1,…,zi〉 with 〈w1,…,wm〉.

IEEE
Std 1320.1-1998 IEEE STANDARD FOR FUNCTIONAL MODELING

48 Copyright © 1998 IEEE. All rights reserved.

The convention in traditional IDEF0 diagrams is that a node number that uniquely designates a
function within a given model is the result of affixing the letter “A” to the numerals corresponding to
the above numbers. For purposes of abstract syntax it is cleaner just to use the numbers themselves and
simply preserve the traditional practice as a usage convention. The standard IDEF0 node numbering
scheme requires that the top level context diagram receive the special diagram number A-0; but the
success of this scheme relies on taking node numbers to be strings rather than genuine numbers (since -
0=0, and hence there is no distinction between A-0 and A0 unless one is talking about the strings “A-
0” and “A0”). The point to note (for those familiar with IDEF0) is that, for the standard node
numbering scheme to work—i.e., where the top level box is assigned box number 0, representing the
function with the node number A0, and its detail diagram has the diagram number A0—the diagram
number of the top level context diagram must be something other than 0 (and, of course, any other node
number). Hence, it is convenient for purposes here simply to assign it the infinite number ωω. The
number –1 would, in fact, have been the most natural choice, but the existing IDEF0 node numbering
scheme permits the use of optional context diagrams, which are numbered with negative numbers. Such
diagrams, and the requisite node numbering scheme, will be introduced in the next draft of this
document.

B.2 IDEF0 diagram structure

In this clause the notion of a diagram structure is defined. It is important to note that it is the notion of a
diagram structure that is defined, rather than the notion of a diagram per se. Diagrams, as the term is
generally used, are components of actual IDEF0 models. They may contain names, notes, and other
material that have no formal counterpart. A diagram structure, by contrast, captures only the form of the
boxes and arrows in a diagram, a form that might be exhibited by many different actual IDEF0 diagrams.
That pointed out, however, in the interest of brevity, the term diagram will be used to mean diagram
structure hereafter.

B.2.1 Diagram prestructures

Definition 12. IDEF0 diagram prestructure

An IDEF0 prestructure D is a triple 〈〈G,#n ,# 〉〉, where G== 〈〈VG ,EG 〉〉 is an IDEF0 graph,
and # is a function on BG and #n is a function on BG ∪∪ {G}, such that

(1) For every b∈∈ BG , there is an s∈∈ SG such that CGsb.

This requirement states that every box have at least one control arrow.

(2) For every b∈∈ BG , there is an s∈∈ SG such that OGbs.

This requirement states that every box have at least one output arrow.

(3) Every box b in BG is assigned a unique box number #(b) between 0 and 9 distinct
from the box numbers of the other boxes in BG .

(4) Each box is assigned a node number #n(b).

(5) G is assigned a node number #n(G).

NOTE—Rules about labeling conventions for boxes and arrows have been omitted. Such conventions are
important, but they are not appropriately treated as elements of an abstract syntax.

IEEE
SYNTAX AND SEMANTICS FOR IDEF0 Std 1320.1-1998

Copyright © 1998 IEEE. All rights reserved. 49

B.2.2 Diagram structures

Definition 13. Context diagram structure

If D== 〈〈G,#n ,# 〉〉 is a prestructure and in addition the following conditions hold, then D is
a context diagram structure (or simply, context diagram):

(1) #n(G)== ωω ;

(2) G contains exactly one box b; and

(3) #n(b)== #(b)== 0.

(4) Every arrow segment in G is an arrow.

Traditional IDEF0 practice assigns the string “A-0” to the top-level context diagram of an IDEF0
model. As above, however, this label is unnecessary for the abstract syntax and can be viewed as a
usage convention.

Definition 14. Noncontext diagram structure

If D== 〈〈G,#n ,# 〉〉 is a prestructure and the following conditions hold, then D is a
noncontext diagram structure (noncontext diagram):

(1) 2## card(BG)##9.

(2) For each box b in BG , #(b)∈∈ {1, ..., card(BG)}.

(3) For each box b in BG , #n(b)== 10(#n(G))+#(b).

Condition (1) is simply the 2-to-9 rule. Together with Condition (3) in Definition 12, Condition (2)
requires that the boxes in a diagram structure D== 〈〈G,#n ,# 〉〉 be uniquely numbered from 1 to n, where n
is card(BG), i.e., the number of boxes in D. Condition (3) ensures that the node number of a box
satisfies the IDEF0 node numbering conventions: #n(b) is the number denoted by the result of
concatenating the numeral for the node number of G with the numeral for b’s box number. Because b’s
box number is always between 1 and 9, inclusive, by Condition (5) in Definition 12, 10(#n(G))++ #(b)
will always be a legitimate node number [as 10(#n(G)) simply “shifts” the places in the decimal
numeral for #n(G) one place “to the left”], and, therefore, this condition is well-founded.

Definition 15. IDEF0 diagram structure

An IDEF0 diagram structure (or simply, diagram) is either a context diagram structure or
a noncontext diagram structure.

B.3 IDEF0 model structures

In this clause the notion of an IDEF0 model structure is defined. The term “model structure” is chosen for
reasons analogous to the choice of “diagram structure” in the previous clause: a model structure
characterizes a certain form that can be shared by many actual IDEF0 models.

NOTE—Henceforth, the IDEF0 graph G in a diagram D will not be distinguished from the diagram itself. Thus,
for example, for a diagram D, “#(D)” will be written instead of “#(G)” to indicate the node number of D’s graph,
“BD

” instead of “BG
” to indicate the boxes in the graph, and so on.

IEEE
Std 1320.1-1998 IEEE STANDARD FOR FUNCTIONAL MODELING

50 Copyright © 1998 IEEE. All rights reserved.

Definition 16. Parent and child diagram relationships

For any two diagrams D and D´, D is a parent diagram of (or simply, parent of) D´ iff
there is a box b in D such that #n(b)== #(D´). In such a case, D´ is said to be a child of D,
D´ a detail diagram of b, and b a parent box of D´.

The parent relation is thus defined simply in terms of node numbers. Specifically, a diagram D is a
parent of some other diagram D´ if and only if some box in D has the same node number as D´.

Before giving the next definition, it will be convenient to extend some of the notational conventions we
have adopted for graphs to diagrams. If D== 〈〈G,#n ,# 〉〉 is a diagram, such that G== 〈〈 VG ,EG 〉〉 ,
BG == VG ∩∩ B, SG == VG ∩∩ S, and JG == VG ∩∩ J, then let BD== BG , SD== SG , and VD== VG .

Definition 17. Diagram uniqueness

Two diagrams D, D´ are disjoint iff BD∩∩ BD́ == SD∩∩ SD́ == JD∩∩ JD́ == ∅∅.

D and D´ are disjoint, that is, if and only if they have no elements of B (boxes) or S (arrow segments)
or J (junctions) in common. This definition is needed because, since B and S and J are simply sets of
primitive elements for building diagrams, there is no reason in general why the same syntactic element
should not be used in more than one diagram.

Definition 18. Ancestral tree

An ancestral tree is a tree ∆∆== 〈〈δδ,P〉〉 such that δδ is a set of pairwise disjoint diagrams, P is
the parent-of relation, and for all D,D´∈∈ δδ, #n(D) ≠≠ #n(D´).

A tree is a directed graph T because there is a single vertex—the root—with no predecessors and there
is a unique path from the root to every other vertex of T. (Therefore, all trees are acyclic, i.e., contain
no cycles.) Vertices with no successors are called leaves. These directed graphs are called trees because,
letting dots represent vertices and arrows represent edges in the usual fashion, they typically have a
distinctively arboreal appearance, though usually inverted, as shown in Figure 46.

∆∆== 〈〈δδ,P〉〉 is an ancestral tree, then, if and only if its vertices are diagrams, each vertex is a parent of its
immediate successors in ∆∆ (this relationship is guaranteed by letting the edges of the tree be the parent-
of relation), and no two diagrams share the same node number. (This last condition prevents the
possibility of more than one detail diagram for a given box.)

IDEF0 models will be defined formally as ancestral trees that satisfy certain conditions. First some
auxiliary notions need to be established.

Definition 19. Ancestral box

Let ∆∆ be an ancestral tree and let b be a box in ∆∆ and D a diagram in ∆∆. Then b is said to
be an ancestral box of D in ∆∆ iff D is a detail diagram of b or b has a detail diagram that
contains an ancestral box of D in ∆∆.

That is, b is an ancestral box of D in an ancestral tree if and only if D is a detail diagram of b, or a
detail diagram of a box in a detail diagram of b, or a detail diagram of a box in a detail diagram of a
box in a detail diagram of b, etc.

Definition 20. ICOM coding

Let ∆∆ be an ancestral tree and let Droot be the root of ∆∆. Let ββ be the set of boundary
arrow segments in ∆∆−− Droot (all the diagrams in a model except the model’s A-0 context

IEEE
SYNTAX AND SEMANTICS FOR IDEF0 Std 1320.1-1998

Copyright © 1998 IEEE. All rights reserved. 51

diagram) and let γγ be the set of arrow segments in ∆∆. An ICOM coding for ∆∆ is a total
function c on ββ into γγ such that for any s in ββ, if s is incoming (outgoing), then c(s)
must be incoming (outgoing) with respect to some ancestral box of D in ∆∆. The pair 〈〈∆∆,c〉〉
is called a coded ancestral tree.

The purpose of an ICOM coding is to relate boundary arrows on a child diagram to arrows connected to
its parent box. The traditional approach to ICOM coding in IDEF0 depends on the spatial geometry of
the arrows in a parent diagram. This method, of course, depends on the particular features of the
standard graphical representation and, therefore, does not apply to the abstract syntax. To capture the
function of ICOM coding abstractly, the notion is defined simply as a function of the set of boundary
arrow segments in all the diagrams of an ancestral tree ∆∆—except for the root diagram Droot—subject
to three conditions. First (Condition (i)), whenever the mapping is defined on some incoming or
outgoing boundary arrow segment s in a diagram D of ∆∆, the mapping must take s to a segment that is
incoming or outgoing, respectively, with respect to an ancestral box of D. In the typical, nontunneled
case (see Definition 21), the ancestral box in question will be the parent box. This definition permits
shifting of input, control, and mechanism arrow roles from parent diagram to child diagram.

The second condition is best explained after another definition. As noted, the usual notion of an ICOM
coding only relates boundary arrows on a child diagram to arrows connected to its parent box.
However, the definition departs from the traditional approach slightly by generalizing the usual notion
in a manner that also yields a definition of tunneling.

Definition 21. Tunneling

Let ∆∆c== 〈〈∆∆,c〉〉 be a coded ancestral tree. Let b be a box in ∆∆c and suppose that b has a
detail diagram D in ∆∆c . A boundary segment s in D is tunneled upward iff c(s) is not
connected to b. Conversely, an arrow segment s connected to b is tunneled downward iff
there is no boundary segment ś in D such that c(ś)== s, or there is a diagram D´ such
that b is not the parent of D´, and for some arrow segment ś in D´, c(ś)== s.

A boundary arrow segment s in a detail diagram D for a box b is tunneled upward (i.e., “at the
unconnected end”), if and only if the ICOM coding c for the ancestral tree ∆∆ does not correlate it with
any arrow segment connected to b, but rather to a segment connected to some other ancestral box.
(That c must map s to an arrow segment connected to some other ancestral box follows from the
definition of a coded ancestral tree.) Conversely, an arrow segment s that is connected to b is tunneled
downward (i.e., “at the connected end”) if and only if c does not correlate any boundary arrow in D
with s, but rather only (at most) correlates a boundary arrow in some lower level diagram D´ with s.
Again by the definition of a coded ancestral tree, b must be an ancestral box of D´. Within the IDEF0
syntax proper, the generalized definition of an ICOM fulfills the task—traditionally assigned to model
notes—of identifying the “other end” of an upwardly tunneled arrow.

The qualification “at most” in the previous paragraph reflects the fact that an ICOM coding as defined
above need not be onto. That is, where b is a box with a detail diagram, not every arrow segment
adjacent to b need be correlated with a boundary arrow segment in some lower level diagram by an
ICOM coding c. More colloquially, an arrow segment can be tunneled downward without any reference
to the “other end” of the tunnel. By contrast, all arrows that are tunneled upward are required to be
correlated with an arrow segment that is adjacent to some ancestral box. (This requirement is enforced
in the syntax by requiring an ICOM coding to be a total function on the class of boundary arrows in a
model excluding those in the context diagram of the model.) For an input, control, mechanism, or
output that has been identified in some lower level activity to have no trace at a higher level would be a
modeling error.

IEEE
Std 1320.1-1998 IEEE STANDARD FOR FUNCTIONAL MODELING

52 Copyright © 1998 IEEE. All rights reserved.

The definition also allows multiple references to a given arrow segment by arrow segments in lower
level diagrams because arrows may branch while tunneled. For example, input data for an activity at a
higher, coarser level of representation might on closer analysis be seen to “feed” numerous lower level
activities.

The account of ICOM coding developed here departs slightly in two ways from the traditional
approach, which defines tunneling for boundary arrows generally. First, tunneling has been defined for
arrow segments instead of arrows. A detail diagram for box b1 in Figure 47, for instance, can be
sensitive at most to the outputs indicated by s1 and s2; the branching of s2 into s3 and s4 indicates a
division of data/objects that occurs outside the activity indicated by the box, and hence outside the scope
of a detail diagram for the box.

An IDEF0 model structure can now be defined simply to be a special sort of coded ancestral tree:

Definition 22. IDEF0 model structure

Let ∆∆c be a coded ancestral tree. Then ∆∆c is an IDEF0 model structure in the lexicon L
iff

(1) Droot is a context diagram;

(2) For all D∈∈ ∆∆−− Droot, D is a noncontext diagram.

To be a full-blown IDEF0 model structure, a coded ancestral tree must satisfy two simple conditions:
the root of the tree must be a context diagram, and every other diagram in the tree must be a noncontext
diagram. Intuitively, every noncontext diagram represents the decomposition of the function indicated
by some parent box. Hence, a noncontext diagram within an IDEF0 model structure is usually referred
to as a decomposition diagram.

The definition is illustrated in Figure 48, which shows the following graphical IDEF0 model structure
(albeit with only two boxes in the noncontext diagrams for the sake of simplicity):

Obviously the pair ∆∆== 〈〈δδ,P〉〉 is a directed graph, where δδ is the set consisting of the IDEF0 graphs {D0,
D1, D2}, and P is the set of edges { 〈〈D0,D1〉〉, 〈〈D1,D2〉〉} (indicated by the dashed lines). ∆∆ is also
clearly a tree, where D0 is the root diagram. Given the node numbering indicated in the lower left
corners of boxes and diagrams, P satisfies the definition of the parent-of relation (Definition 16), and
hence, by Definition 18 (since in addition no two diagrams have the same node number and the
diagrams in δδ are pairwise disjoint (Definition 17)), ∆∆ is an ancestral tree. The mapping c indicated to
the right of D1 and D2 satisfies the conditions on being an ICOM coding set down in Definition 20
(e.g., the outgoing boundary arrow s13 is mapped to an arrow segment that is outgoing with respect to
D2’s parent box, which is, therefore, an ancestral box of D28), and hence the pair 〈〈∆∆,c〉〉 (also known as
∆∆c) is a coded ancestral tree, by Definition 21. Since the root D0 of ∆∆ satisfies the definition of a
context diagram, and since D1 and D2 do not, it follows by Definition 22 that ∆∆c is indeed an IDEF0
model.

B.4 Scope of this annex

Readers familiar with IDEF0 will notice the absence of several common notions, in particular, model
identifiers, higher level context diagrams, and call arrows. Though all three are important, they have not
been included in the formal syntax because they are theoretically dispensable. A call arrow, for instance,

8Note also that s11 is tunneled upward and, hence, that its “other end”, s2, is tunneled downward.

IEEE
SYNTAX AND SEMANTICS FOR IDEF0 Std 1320.1-1998

Copyright © 1998 IEEE. All rights reserved. 53

could in principle be replaced by the box that it points to, together with its “descendants” (suitably
modified, perhaps). For similar reasons, labeling conventions for arrow segments have also not been
included. Every arrow segment is simply assumed to have a label in this annex.

The absence of higher level optional context diagrams should also be noted. It is not clear that such
diagrams should be thought of as theoretically dispensable. However, their inclusion in this standard
would add a significant degree of complexity that it was felt would best be avoided in the first version of
this standard. Future versions will be suitably modified to indicate how such diagrams can be included in
legitimate IDEF0 model structures.

IEEE
Std 1320.1-1998 IEEE STANDARD FOR FUNCTIONAL MODELING

54 Copyright © 1998 IEEE. All rights reserved.

Annex C

(informative)

Examples of IDEF0 usage and style

This annex contains the figures cited in the body and in Annex B of this standard.

Each figure referenced in the text is presented as an FEO page in this annex. Most such FEO pages are
accompanied by one or more text pages and some are accompanied as well by one or more glossary pages.

C.1 Overview

These figures for the language formalization are designed to demonstrate technical aspects of IDEF0
models and model pages as standardized by IEEE Std 1320.1-1998 and to illustrate concepts developed by
Annex B. In addition, these figures are also designed to demonstrate preferred IDEF0 style and
presentation. To support these objectives, these figures use the IDEF SDF.

Because the SDF, with identifying, message, and working information fields, is formatted for ordinary
8½-by-11-inch paper, the figures have been collected into their own annex of this document. This separate
compilation avoids these problems:

a) Poor readability. The SDF claims an entire page each time it is used. Particularly when several
figures are referenced from locations close to one another in the text, the flow of reading could be
interrupred by several pages of illustrations.

b) Absence of facing text and glossary pages. A demonstration of good style and presentation within
a document treating IDEF0 should include the use of facing text pages and glossary pages. Each
figure is designed to illustrate a specific topic addressed in the body of the standard. However,
these figures often contain features, unrelated to that primary purpose, that should be discussed in a
nonbinding way. To include such nonbinding commentary in the body of a binding standard would
be inappropriate. In addition, the use of facing text and and glossary pages to accompany and
illuminate each formal figure clearly could only compound the first two problems.

c) Implication of SDF standardization. The SDF is not a subject of IEEE Std 1320.1-1998 nor has the
SDF been standardized by any other standards document. Nonetheless, competent IDEF modelers
routinely and customarily used the SDF in a standard way. Therefore, collecting the figures
separately from the body of IEEE Std 1320.1-1998—which expresses the mandatory features and
characteristics of IDEF0 models and model pages—distinguishes the nonbinding use of the SDF
for IDEF modelers while allowing the presentation of conventional characteristics of IDEF0 model
presentation.

C.2 About the IDEF SDF

The SDF is documented in the informative annexes of FIPS PUB 183 [B2] and FIPS PUB 184 [B3],
among other sources. While the design and use of the SDF is well-established, neither design nor use has
been formally standardized. It has been adapted here to the specific purpose of illustrating the language
formalization. Indeed, the IDEF community remains reluctant to standardize the SDF precisely to avoid
compromising the modeler’s capability to adapt the SDF to special purposes such as this document.

IEEE
SYNTAX AND SEMANTICS FOR IDEF0 Std 1320.1-1998

Copyright © 1998 IEEE. All rights reserved. 55

C.3 How the SDF is used in this document

To adapt the SDF to this document, the conventional fields of the SDF have been treated as described in
this clause. Each field is discussed as it is found in the SDF, working from left to right and from top to
bottom, through the working information and the identification fields.

C.3.1 Used at field

The used at field is not used.

C.3.2 Author field

The author field does not identify the individual who prepared these diagrams. Instead, the author field
identifies the “IEEE IDEF0 Working Group,” which directed the creation of these figures.

C.3.3 Project field

The project field identifies “IDEF0 Language Formalization” as the project name.

C.3.4 Model field

The language formalization introduces the requirement that a model’s name and model name abbreviation
be presented in the A-0 context diagram of a model. Reinforcing this requirement, a field labelled Model
has been added to the working information fields to capture the model name and its abbreviation. The
model name abbreviation is given within parentheses following the model name. For the figures in this
annex, the model name is given as “Formalization Figures” and “FF” is given as the model name
abbreviation.

C.3.5 Notes field

Because these figures are not presented as examples of products produced during the development or kit
cycle review of a model, the notes field is not used.

C.3.6 Status field

The status for each figure has been set to “Publication,” which is consistent with the use of the page
subfield within the number field (see Number Field, below). However, in spite of this publication status,
all figures retain their working information fields. Thus, no cutting gutter between the working
information fields and the message field is provided.

C.3.7 Reader/date field

Because these figures are not presented as examples of products produced during the development or kit
cycle review of a model, the reader/date field is not used.

IEEE
Std 1320.1-1998 IEEE STANDARD FOR FUNCTIONAL MODELING

56 Copyright © 1998 IEEE. All rights reserved.

C.3.8 Context field

The language formalization does not address the notion of context represented by the context field of the
SDF. In standard practice, the context field provides some sort of thumbnail image of a diagram’s parent
diagram or contains the appropriate bounding token for a model’s highest context diagram(s).

Within an IDEF0 model, a nondiagram page has the same context as the IDEF0 diagram to which it is
related. The difficulty here is that these figures are not necessarily related to specific IDEF0 diagrams
because these figures do not constitute an IDEF0 model. Thus, a proper source for the contents of the
context field is missing. In the absence of diagram contexts, the context fields of these figures are
generally left blank. However, when a figure does present a diagram page or a fragment of such a diagram
page, the context field will contain an appropriate context image or token.

C.3.9 Model page field

The traditional node field has been renamed. The new name, model page, reflects the language
formalization’s refinement of the FIPS PUB 183 concept of node reference and the introduction of new
page reference terminology (see C.4).

C.3.10 Figure field

The traditional title field has been renamed the figure field and is used to present a figure caption rather
than a proper IDEF0 diagram title. As established by the language formalization, the title of an IDEF0
diagram is (generally) the name of the box that the diagram details, and this diagram title is normally
recorded in the SDF’s title field. According to the language formalization, an IDEF0 diagram page is
identified by both a title and a diagram number while an associated nondiagram model page is separately
identified only by the page reference that links that page to its associated diagram.

The difficulty here is that these figures are not necessarily related to specific IDEF0 diagrams because
these figures do not constitute an IDEF0 model. Thus, a proper source for the contents of the title field is
missing. In the absence of diagram titles, the figure field is used to caption the contents of the SDF’s
message field, using MS Word’s captioning construct.

C.3.11 Number field

The number field in these figures contains a C-number (the so-called configuration control number) and a
page subfield with the label P. This page subfield contains a document page number determined by MS
Word pagination.

C.4 Page references

While these figures illustrate features of IDEF0 models and model pages, these figures are not themselves
an IDEF0 model; this annex contains only FEO, text, and glossary model pages. However, the language
formalization specifies that every nondiagram page within an IDEF0 model must be associated through its
page reference to one specific IDEF0 diagram.

In the absence of IDEF0 diagrams, semantically valid page references—in the sense of the language
formalization—cannot be constructed for these FEO, text, and glossary pages. Nonetheless, even in the
absence of a proper IDEF0 model, these figures should still demonstrate proper form, i.e., a syntactically
valid page reference, in the model page field. To this end, fictitious diagram numbers have been derived
from a topical sequencing of figures used in earlier versions of this document. Should a series of FEO

IEEE
SYNTAX AND SEMANTICS FOR IDEF0 Std 1320.1-1998

Copyright © 1998 IEEE. All rights reserved. 57

pages address a single topic, their page references will contain the same diagram numbers while their
page type sequence numbers will increment.

To emphasize that this diagram reference is a syntactic construct rather than a semantically meaningful
reference, “S” (for “subject”) is used as the node letter instead of the customary node letter “A,” as
allowed by the language formalization. Thus, the first FEO page is identified as Figure 1 in the body of
the standard and its model page reference is given as S1F1. The second FEO page addressing the 19th
subject addressed by FEO pages in the document would be similarly given the page reference S19F2.
Likewise, a facing text page that discusses the first FEO page discussing the fifth topic for which FEO
pages have been provided would be given the page reference S5F1T1.

The language formalization allows as many as nine boxes in an IDEF0 diagram; this new flexibility
allows the digit “9” in the FEO page reference S19F2 to be syntactically correct. However, the digit “0”
would remain syntactically incorrect in these constructed diagram references; this is because the box
number 0 is allowed only to identify the box that represents the A0 function in the A-0 and A-1 context
diagrams. Thus a constructed page reference such as S20F1 would be both semantically invalid and
syntactically incorrect. Therefore, the topical page references constructed for the FEO pages of this annex
do not include fictitious diagram numbers which include the digit 0; in effect, the sequence of subject
numbers standing in for diagram numbers skips “10,” “20,” and “30.”

C.5 Facing text pages

The content of facing text pages in this annex describes and explains the FEO figures that they
accompany. The content of these text pages is informative only.

C.6 Glossary pages

The content of glossary pages in this annex define terms in the FEO figures that they accompany. The
content of these glossary pages is informative only, unless the definition is also given in Clause 2.

C.7 Diagram.feature references

To minimize visual clutter, IDEF0 diagram.feature references are used extensively in these figures rather
than activity names and arrow labels. Refer to facing text pages for more expansive information.

C.8 Acknowledgments

These figures were prepared using Design/IDEF, Release 3.7, from Meta Software, Inc.

 Used at: Author:
Project:
Model:

Notes:

IEEE IDEF0 Working Group
IDEF0 Language Formalization
Formalization Figures (FF)

1 2 3 4 5 6 7 8 9 10

Date:
Rev:

Oct 1996
Feb 1998

X Publication
Recommended
Draft
Working

 Reader Date Context:

Ä

Æ Ã
box detail reference

box number

box name

Develop
Model

3

boxÉ

 Model Page: FF/S1F1 Figure 1—Box Syntax Number: AKB001 P. 58

 Used at: Author:
Project:
Model:

Notes:

IEEE IDEF0 Working Group
IDEF0 Language Formalization
Formalization Figures (FF)

1 2 3 4 5 6 7 8 9 10

Date:
Rev:

Oct 1996
Feb 1998

X Publication
Recommended
Draft
Working

 Reader Date Context:

Ç
arrowhead0

Published ProposalDraft Proposal

È
arrowtail

Ê
ICOM label

È
arrow segment

Acceptance Criteria

Cognizant Office

Ê
boundary arrow

Ç
boundary arrow

É
arrow segment

Å
ICOM label

É
ICOM label

Ã
ICOM label

Ä
arrowtail

Å
boundary arrow

Æ
arrow segment

Ä
arrowtail

Å
boundary arrow

Æ
arrow segment

Ä
arrowhead

É
arrowtail

È
arrowhead

Å
arrowhead

 Model Page: FF/S2F1 Figure 2—Arrow Syntax (A-0 Context Diagram) Number: AKB002 P. 59

 Used at: Author:
Project:
Model:

Notes:

IEEE IDEF0 Working Group
IDEF0 Language Formalization
Formalization Figures (FF)

1 2 3 4 5 6 7 8 9 10

Date:
Rev:

Oct 1996
Feb 1998

X Publication
Recommended
Draft
Working

 Reader Date Context:

Ä
squiggle Å

boundary arrow

Å
ICOM codeÈ

internal arrow

É
ICOM label

2

3

O4
Published Proposal

Approved Proposal

90o

90o

I2
Draft Proposal

Ç
boundary arrow

Ê
ICOM label

Æ
arrow segment

È
ICOM code

Approved Proposal

C1 Approval Criteria
C2 Publication Rules

Ê
arrow label

Ç
ICOM label

Ç
ICOM label

È
boundary arrow

Æ
boundary arrow

Ê
ICOM code

Ê
ICOM code

 Model Page: FF/S2F2 Figure 3—Arrow Syntax (Decomposition Diagram) Number: AKB003 P. 60

 Used at: Author:
Project:
Model:

Notes:

IEEE IDEF0 Working Group
IDEF0 Language Formalization
Formalization Figures (FF)

1 2 3 4 5 6 7 8 9 10

Date:
Rev:

Oct 1996
Feb 1998

X Publication
Recommended
Draft
Working

 Reader Date Context:

I3
Untrained Staff

Branching Joining

O2
Trained Staff

Untrained Gyrists

Untrained Fitters

Untrained Hefters

Trained Gyrists

Trained Fitters

Trained Hefters

È
root arrow segment

Æ
arrow junction

É
branching arrow segment

Ê
arrow junction

È
branching arrow segment

Å
branching arrow segment

É
branching arrow segment

É
arrow junction

Å
arrow junction

Ç
root arrow segment

É
joining arrow segment

Ç
joining arrow segment

Ê
joining arrow segment Ä

joining arrow segment

branch join

1

2

3

 Model Page: FF/S2F3 Figure 4—Arrow Syntax (Arrow Segments) Number: AKB004 P. 61

 Used at: Author:
Project:
Model:

Notes:

IEEE IDEF0 Working Group
IDEF0 Language Formalization
Formalization Figures (FF)

1 2 3 4 5 6 7 8 9 10

Date:
Rev:

Oct 1996
Feb 1998

X Publication
Recommended
Draft
Working

 Reader Date Context:

I1
Untrained Staff

 1

 2

Branching arrows Joining arrows

O2
Trained Staff

 3

Untrained Gyrists

Untrained Fitters

Untrained Hefters

Trained Gyrists

Trained Fitters

Trained Hefters

Ê
ICOM label Å

arrow C3:3C1

É
ICOM label

É
ICOM label

É
arrow label

Ê
arrow I1:2I2

Ä
root

Ç
ICOM code

È
ICOM code

Ê
arrow label

C3 Competency Criteria
Ê

ICOM code

Ã
junction

Å Æ Å
branch

branches

Ä
arrow 1O1:2I1

Å
arrow 3O1:O2

Æ
arrow 3O1:2M1

Ê
arrow segment

Æ
squiggle

Æ
squiggle

 Model Page: FF/S2F4 Figure 5—Arrow Syntax (Multi-Segment Arrows) Number: AKB005 P. 62

 Used at: Author:
Project:
Model:

Notes:

IEEE IDEF0 Working Group
IDEF0 Language Formalization
Formalization Figures (FF)

1 2 3 4 5 6 7 8 9 10

Date:
Rev:

Oct 1996
Feb 1998

X Publication
Recommended
Draft
Working

 Reader Date Context:

Function

4

Control

OutputInput

Mechanism

Call Reference

#

 Model Page: FF/S3F1 Figure 6—Arrow Attachments and Roles Number: AKB006 P. 63

 Used at: Author:
Project:
Model:

Notes:

IEEE IDEF0 Working Group
IDEF0 Language Formalization
Formalization Figures (FF)

1 2 3 4 5 6 7 8 9 10

Date:
Rev:

Oct 1996
Feb 1998

X Publication
Recommended
Draft
Working

 Reader Date Context:

Design System
Details

0

Design Requirements

M

Design Engineer

O1Detail Design
I1

Preliminary Design

Delivery Schedule

CAD Resources

I2Vendor Design Studies O2Design Review Package

 Model Page: FF/S3F2 Figure 7—Label and Name Example (A-0 Context Diagram) Number: AKB007 P. 64

 Used at: Author:
Project:
Model:

Notes:

IEEE IDEF0 Working Group
IDEF0 Language Formalization
Formalization Figures (FF)

1 2 3 4 5 6 7 8 9 10

Date:
Rev:

Oct 1996
Feb 1998

X Publication
Recommended
Draft
Working

 Reader Date Context:

Design System
Details

2

C1 Design Requirements

MFG/A631
ACR/A33

M1 Design Engineer

O1
Detail Design

I1
Preliminary Design

C2 Delivery Schedule

M2 CAD Resources

I2 Vendor Design Studies
O2

Design Review Package

 Model Page: FF/S3F3 Figure 8—Label and Name Example (Boundary Arrows) Number: AKB008 P. 65

O1

O2

 Used at: Author:
Project:
Model:

Notes:

IEEE IDEF0 Working Group
IDEF0 Language Formalization
Formalization Figures (FF)

1 2 3 4 5 6 7 8 9 10

Date:
Rev:

Oct 1996
Feb 1998

X Publication
Recommended
Draft
Working

 Reader Date Context:

Design System
Details

3

 Design Requirements

MFG/A631
ACR/A33

M1 Design Engineer

O1
Detail Design

Delivery Schedule

M2 CAD Resources

I2 O2
Design Review Package

Activity 1

1

Activity 4

4

Activity 2

2

Design Review Approval Items

Preliminary Design

V

Vendor Design Evaluations

Vendor White Papers

S3F4

Vendor Design Studies

 Model Page: FF/S3F4 Figure 9—Label and Name Example (Internal Arrows) Number: AKB009 P. 66

 Used at: Author:
Project:
Model:

Notes:

IEEE IDEF0 Working Group
IDEF0 Language Formalization
Formalization Figures (FF)

1 2 3 4 5 6 7 8 9 10

Date:
Rev:

Oct 1996
Feb 1998

X Publication
Recommended
Draft
Working

 Reader Date Context:

A bstract join: T he separate

m ean ings of the joining

segments are bundled into a

higher abstraction.

A bstract branch: T he

branching segm ents unbundle

the root m ean ing in to its

component meanings.

G eneral join: D ifferent

subsets from different places.

G eneral bran ch: D ifferen t

subsets to different places.

Fungible join : T h e sam e

thing from different places.

Fungible branch: T he sam e

thing to different places.

1 2

Bundle Q = AUBUC = XUYUZ

A

B

C

X

Y

Z

Mixed subsets:
arrow union

1 2

Bundle Q = A

A

A

A

A

A

A

Fungible:
arrow replication

1 2

Bundle Q = A+B+C = AUBUC

A

B

C

B

C

A

Abstraction:
arrow addition

 Model Page: FF/S4F1 Figure 10—Arrow Bundling (Meaning) Number: AKB010 P. 67

 Used at: Author:
Project:
Model:

Notes:

IEEE IDEF0 Working Group
IDEF0 Language Formalization
Formalization Figures (FF)

1 2 3 4 5 6 7 8 9 10

Date:
Rev:

Oct 1996
Feb 1998

X Publication
Recommended
Draft
Working

 Reader Date Context:

1

2

3

C1 C2 C3

I1

I1

I3

M1

O1

O2

O3

I4

1 These arrows branch into both input and control.
The arrow objects in their input roles may be
transformed into output.

1

1 2 By this convention, these control arrows model both
input and control. Only in their input roles may these
arrow objects be transformed into output. This detail
must be presented in the decomposition diagram for
this box.

2

2

3 Model Note 1 illustrates the branching of an arrow into two components. One branch
assigns the arrow object an input role and the other assigns the arrow object a
complementary control role. Model Note 2 illustrates the control/input arrow convention
applied to structurally identical arrows and roles.

3

1

O4
O5

2

S4F2

 Model Page: FF/S4F2 Figure 11—Arrow Bundling (Roles) Number: AKB011 P. 68

O2

 Used at: Author:
Project:
Model:

Notes:

IEEE IDEF0 Working Group
IDEF0 Language Formalization
Formalization Figures (FF)

1 2 3 4 5 6 7 8 9 10

Date:
Rev:

Oct 1996
Feb 1998

X Publication
Recommended
Draft
Working

 Reader Date Context:

Explicit Arrow Segment Labels Implied Arrow Segment Labels

B
I A

O3

O4

B
I2 O3

O4
A

B
I A

O3

O4

B
I2 O3

O4
AA

A

A
I2 O3

O4

I A O3

O4

A
I2 O3

O4

I A O3

O4

A A

A A

1 Scope: Holds both for internal arrow segments and for input, control, and mechanism
boundary arrows.

 Model Page: FF/S5F1 Figure 12—Label Propagation (Branching from Labeled Root) Number: AKB012 P. 69

 Used at: Author:
Project:
Model:

Notes:

IEEE IDEF0 Working Group
IDEF0 Language Formalization
Formalization Figures (FF)

1 2 3 4 5 6 7 8 9 10

Date:
Rev:

Oct 1996
Feb 1998

X Publication
Recommended
Draft
Working

 Reader Date Context:

B A B
I2 OA

O4

I2 OA

O4

A A
I2

O4

O
A

O4

I2 O
A

1 Scope: Holds only for output boundary arrows. Does NOT hold for internal arrow segments.

B
undefined

B
I2 O3

O4

I2 O3

O4

A A

Explicit Arrow Segment Labels Implied Arrow Segment Labels

 Model Page: FF/S5F2 Figure 13—Label Propagation (Branching from Unlabeled Root) Number: AKB013 P. 70

 Used at: Author:
Project:
Model:

Notes:

IEEE IDEF0 Working Group
IDEF0 Language Formalization
Formalization Figures (FF)

1 2 3 4 5 6 7 8 9 10

Date:
Rev:

Oct 1996
Feb 1998

X Publication
Recommended
Draft
Working

 Reader Date Context:

A A AA
I3

O3 O3I2

I3

I2

A A
I3

O
A O

A
I2

I3

I2

A B
I3

O
A

O
A

I2

I3

I2
B

1 Scope: Holds both for internal arrow segments and for output boundary arrows.

2 Scope: Holds only for output boundary arrows. Does NOT hold for internal arrow segments.
In either case, B must be a subset of A.

A

undefined

AB
I3

O3 O3I2

I3

I2
B

Explicit Arrow Segment Labels Implied Arrow Segment Labels

 Model Page: FF/S5F3 Figure 14—Label Propagation (Joining to Labeled Root) Number: AKB014 P. 71

 Used at: Author:
Project:
Model:

Notes:

IEEE IDEF0 Working Group
IDEF0 Language Formalization
Formalization Figures (FF)

1 2 3 4 5 6 7 8 9 10

Date:
Rev:

Oct 1996
Feb 1998

X Publication
Recommended
Draft
Working

 Reader Date Context:

1 Scope: Holds only for input, control, and mechanism boundary arrows. Missing labels for joining arrow segments are
NOT determined by this convention. Does NOT hold for internal arrow segments. In all cases, whether labeled or not,
the joining segment must represent a subset of A.

B
I

A

I3

O3
B

I
A

I3

O3
A

Implied Arrow Segment LabelsExplicit Arrow Segment Labels

x

I
A

I3

O3 I
A

I3

O3
Anot A

x

B
I2

I3

I2

I3

O3

O3

B
I2

I3

I2

I3

O3

O3

undefined

undefined

undefined

A A

A A

 Model Page: FF/S5F4 Figure 15—Label Propagation (Joining to Unlabeled Root) Number: AKB015 P. 72

 Used at: Author:
Project:
Model:

Notes:

IEEE IDEF0 Working Group
IDEF0 Language Formalization
Formalization Figures (FF)

1 2 3 4 5 6 7 8 9 10

Date:
Rev:

Oct 1996
Feb 1998

X Publication
Recommended
Draft
Working

 Reader Date Context:

1

2

3

O1
Output Q

O2
Output H

Output 2O1
I1

Input B

C1 Control M

Input 1I1 Control 1C1

Input 2I3

M2 Mechanism V

M1 Mechanism A

Mechanism 3M1

C2 Control S

Control 2C1 Control 2C2

O3
Output X

Output 2O2:O2

I2
Input T

Output 2O4

Output 1O3

Output C
O4

M3 Mechanism D

Output F

Output K

O5

O6
Output 3O3

I3
Input E

Input I2:1I2

Input Z
I4

Output 2O3

Input 3I2

Output 1O4

S5F5

 Model Page: FF/S5F5 Figure 16—Label Propagation Examples Number: AKB016 P. 73

1

2

 Used at: Author:
Project:
Model:

Notes:

IEEE IDEF0 Working Group
IDEF0 Language Formalization
Formalization Figures (FF)

1 2 3 4 5 6 7 8 9 10

Date:
Rev:

Oct 1996
Feb 1998

X Publication
Recommended
Draft
Working

 Reader Date Context:

Input Z

Output 1O4

1

3

O1
Output Q

O2
Output H

Output 2O1
I1

Input B

C1 Control M

Input 1I1
Control 1C1

Input 2I3

M2 Mechanism V

M1 Mechanism D

Mechanism 3M1

C2 Control S

Control 2C1 Control 2C2

O3
Output X

Output 2O2:O2

I2 Input T

Output 2O4

Output 1O3

Output C
O4

M3 Mechanism D

Output F

Output K

O5

O6Output 3O3

I3

Input I2:1I2
I4

Output 2O3

Input 3I2

2

Input E

2 An ICOM label for an input, control, or
mechanism boundary arrow implicitly
identifies all subsequent and branching
arrow segments that are not explicitly labeled.

3 An ICOM label for an output boundary
arrow implicitly identifies all antecedent
and joining arrow segments that are not
explicitly labeled.

1 An identifier within a rectangle that
overlays an arrow segment marks an arrow
segment implicitly identified by label
propagation according to IDEF0 conventions.

3

3

2

2

S5F6

Output C

Input E

Output C

Input E

 Model Page: FF/S5F6 Figure 17—Label Propagation Example Detail 1 Number: AKB017 P. 74

Output C

 Used at: Author:
Project:
Model:

Notes:

IEEE IDEF0 Working Group
IDEF0 Language Formalization
Formalization Figures (FF)

1 2 3 4 5 6 7 8 9 10

Date:
Rev:

Oct 1996
Feb 1998

X Publication
Recommended
Draft
Working

 Reader Date Context:

Output 1O4

1

3

O1
Output Q

O2
Output H

Output 2O1
I1

Input B

C1 Control M

Input 1I1
Control 1C1

Input 2I3

M2 Mechanism V

M1 Mechanism D

Mechanism 3M1

C2 Control S

Control 2C1 Control 2C2

O3Output X

Output 2O2:O2

I2
Input T

Output 2O4

Output 1O3

Output C O4

M3 Mechanism D

Output F

Output K

O5

O6Output 3O3

I3

Input I2:1I2

Input ZI4

Output 2O3

Input 3I2

2

Input E

Mechanism D

Control S

1 An ICOM label for an
input, control, or
mechanism boundary
arrow implicitly
identifies all
subsequent and
branching arrow
segments that are not
explicitly labeled.

2 EXCEPTION: If
more than one
input, control, and
mechanism path
exists between an
explicit arrow or
ICOM label and a
box, none of these
paths may be
implicitly
identified by
propagation.

Control S

Mechanism D

Mechanism D

Control S
1

1

1

1 1

1

22

S5F7

 Model Page: FF/S5F7 Figure 18—Label Propagation Example Detail 2 Number: AKB018 P. 75

 Used at: Author:
Project:
Model:

Notes:

IEEE IDEF0 Working Group
IDEF0 Language Formalization
Formalization Figures (FF)

1 2 3 4 5 6 7 8 9 10

Date:
Rev:

Oct 1996
Feb 1998

X Publication
Recommended
Draft
Working

 Reader Date Context:

Output 1O4

3

O1
Output Q

O2Output H

Output 2O1I1

Input B

C1 Control M

Input 1I1
Control 1C1

Input 2I3

M2 Mechanism V

M1 Mechanism D

Mechanism 3M1

C2 Control S

Control 2C1 Control 2C2

O3
Output X

Output 2O2:O2

I2
Input T

Output 2O4

Output 1O3

Output C
O4

M3 Mechanism D

Output F

Output K

O5

O6Output 3O3

I3

Input I2:1I2

Input Z
I4

Output 2O3

Input 3I2
2

Input E
Input B

1 An ICOM label for an input, control,
or mechanism boundary arrow
implicitly identifies all subsequent
and branching arrow segments that
are not explicitly labeled.

2 An ICOM label for an output boundary
arrow implicitly identifies all
antecendent and joining arrow
segments that are not explicitly labeled.

Input T

Input T

Input T

Output Q

Output Q Output Q

4 EXCEPTION: The identity of an
arrow segment that links two arrows
is ambiguous. Arrow identity may
not propagate to an ambiguous
segment. Such an ambiguous arrow
segment must be explicitly labeled.

3 The root arrow identity of an internal
arrow implicitly identifies all branching
or joining arrow segments that are not
themselves explicitly labeled by an
arrow label.

1
3

4

5 EXCEPTION: Arrow identity may not
propagate to an output arrow segment if
that identity can propagate to an input,
control, or mechanism arrow segment
attached to the same box. Such an output
arrow segment must be explicitly labeled.

5

2 2

3

1

1

1

S5F8

 Model Page: FF/S5F8 Figure 19—Label Propagation Example Detail 3 Number: AKB019 P. 76

1

 Used at: Author:
Project:
Model:

Notes:

IEEE IDEF0 Working Group
IDEF0 Language Formalization
Formalization Figures (FF)

1 2 3 4 5 6 7 8 9 10

Date:
Rev:

Oct 1996
Feb 1998

X Publication
Recommended
Draft
Working

 Reader Date Context:

Output 1O4

1

3

O1
Output Q

O2
Output H

Output 2O1
I1

Input B

C1 Control M

Input 1I1 Control 1C1

Input 2I3

M2 Mechanism V

M1 Mechanism D

Mechanism 3M1

C2 Control S

Control 2C1 Control 2C2

O3Output X

Output 2O2:O2

I2 Input T

Output 2O4

Output 1O3

Output C O4

M3 Mechanism D

Output F

Output K

O5

O6Output 3O3

I3

Input I2:1I2

Input Z
I4

Output 2O3

Input 3I2

2

Input E

1 An ICOM label for an input,
control, or mechanism
boundary arrow implicitly
identifies all subsequent
and branching arrow
segments that are not
explicitly labeled.

Input Z
1

2 EXCEPTION: Arrow identity
may not propagate to an output
arrow segment if that identity
can propagate to an input,
control, or mechanism arrow
segment attached to the same
box. Such an output arrow
segment must be explicitly
labeled.

2

3 EXCEPTION: If more than one
input, control, and mechanism
path exists between an explicit
arrow or ICOM label and a box,
none of these paths may be
implicitly identified by
propagation.

3 3

4 EXCEPTION: The identity of an
arrow segment that joins two
boundary arrows is ambiguous.
Arrow identity may not propagate to
an ambiguous segment. Such an
ambiguous arrow segment must be
explicitly labeled.

4

S5F9

 Model Page: FF/S5F9 Figure 20—Label Propagation Example Detail 4 Number: AKB020 P. 77

 Used at: Author:
Project:
Model:

Notes:

IEEE IDEF0 Working Group
IDEF0 Language Formalization
Formalization Figures (FF)

1 2 3 4 5 6 7 8 9 10

Date:
Rev:

Oct 1996
Feb 1998

X Publication
Recommended
Draft
Working

 Reader Date Context:

Output 1O4

1

3

O1
Output Q

O2
Output H

Output 2O1
I1

Input B

C1 Control M

Input 1I1
Control 1C1

Input 2I3

M2 Mechanism V

M1 Mechanism D

Mechanism 3M1

C2 Control S

Control 2C1 Control 2C2

O3Output X

Output 2O2:O2

I2
Input T

Output 2O4

Output 1O3

Output C O4

M3 Mechanism D

Output F

Output K
O5

O6

Output 3O3

I3

Input I2:1I2

Input Z
I4

Output 2O3

Input 3I2

2

Input E

Output 1O3

1 The root arrow identity of an internal
arrow implicitly identifies all branching
or joining arrow segments that are not
themselves explicitly labeled by an
arrow label.

4 EXCEPTION: The identity of an arrow segment that
branches into two boundary arrows is ambiguous. Arrow
identity may not propagate to an ambiguous segment. Such
an ambiguous arrow segment must be explicitly labeled.

2 EXCEPTION: The root arrow identity of an internal arrow implicitly
identifies all joining arrow segments that are not themselves explicitly
labeled if and only if one and only one joining arrow segment is a
constituent of a boundary arrow. Without such a boundary arrow,
each joining arrow segment must be explicitly labeled.

Output 1O3

1

1

2

2

3 An ICOM label for an output boundary
arrow implicitly identifies all antecedent
and joining arrow segments that are not
explicitly labeled.

4

S5F10

 Model Page: FF/S5F10 Figure 21—Label Propagation Example Detail 5 Number: AKB021 P. 78

 Used at: Author:
Project:
Model:

Notes:

IEEE IDEF0 Working Group
IDEF0 Language Formalization
Formalization Figures (FF)

1 2 3 4 5 6 7 8 9 10

Date:
Rev:

Oct 1996
Feb 1998

X Publication
Recommended
Draft
Working

 Reader Date Context:

1

2

3

1 Once the Multiple-use Output
modelled by arrow 1O1:(2C1,3C1)
exists, Functions 2 and 3 may
activate concurrently.

Multiple-use Output

O1

O2

I1

C1

I2
Multiple-use Input

2 Once the Multiple-use Input
modelled by arrow 12:(2I1,3I1)
exists, Functions 2 and 3 may
activate concurrently.

 Model Page: FF/S6F1 Figure 22—Concurrent Activation Number: AKB022 P. 79

 Used at: Author:
Project:
Model:

Notes:

IEEE IDEF0 Working Group
IDEF0 Language Formalization
Formalization Figures (FF)

1 2 3 4 5 6 7 8 9 10

Date:
Rev:

Oct 1996
Feb 1998

X Publication
Recommended
Draft
Working

 Reader Date Context:

TOP

Plan New Information
Program

0

Program Charter

Program Plan

Issue Statements

Operations Data

Program Team

Purpose:

Viewpoint:

Model Name: Manage Information Resources (MIR)

Information Integration Assessment Manager

To identify the activities required to assess, plan,
and streamline information management functions.

Corporate Performance Metrics

Automated Planning Tool Suite

 Page: MIR/A-0 Title: Context for New Information Program Planning Number: QRJ12

 Model Page: FF/S7F1 Figure 23—Example A-0 Context Diagram Number: AKB037 P. 80

 Used at: Author:
Project:
Model:

Notes:

IEEE IDEF0 Working Group
IDEF0 Language Formalization
Formalization Figures (FF)

1 2 3 4 5 6 7 8 9 10

Date:
Rev:

Oct 1996
Feb 1998

X Publication
Recommended
Draft
Working

 Reader Date Context:

NONE

Plan New
Information

Program

0

Program Charter

Program Plan

Operations Data

Corporate Performance Metrics

Automated Planning Tool Suite

Plan
Corporate
Behavior

1

Establish
Planning
Group

2

Inform
Employees

4

Strategic Plan

Corporate Planning Directives

Employees

Informed Staff
Senior Employees

Management

Senior Executives Corporate Intranet

Program Team

Issue Statements

 Page: MIR/A-1 Title: Context for New Information Program Planning Number: QRJ16

 Model Page: FF/S7F2 Figure 24—Example A-1 Context Diagram Number: AKB045 P. 81

 Used at: Author:
Project:
Model:

Notes:

IEEE IDEF0 Working Group
IDEF0 Language Formalization
Formalization Figures (FF)

1 2 3 4 5 6 7 8 9 10

Date:
Rev:

Oct 1996
Feb 1998

X Publication
Recommended
Draft
Working

 Reader Date Context:

provides Model Viewpoint,
Model Purpose, and
Model Naming

A1 A2 A3 A4 A-141 A-142 A-143

Parental Context = NONE
A-2

Parental Context = TOP
A-0

A-21 A-22 A-1 A-24

A21 A22 A23

A-211 A-212 A-213 A-11 A0 A-13 A-14

 Model Page: FF/S8F1 Figure 25—Example of Context Structure Number: AKB023 P. 82

 Used at: Author:
Project:
Model:

Notes:

IEEE IDEF0 Working Group
IDEF0 Language Formalization
Formalization Figures (FF)

1 2 3 4 5 6 7 8 9 10

Date:
Rev:

Oct 1996
Feb 1998

X Publication
Recommended
Draft
Working

 Reader Date Context:

2 A box detail reference (a box number
within an enclosed corner) indicates that
its box has been detailed, i.e., a
decomposition diagram exists for the
activity represented by that box.

3 Box A-0.0
is the parent of
the A0 diagram.

4 Box A0.3
is the parent of
the A3 diagram.

5 Box A3.2
is the parent of
the A32 diagram.

1

More General

More Detailed

 Model Page: FF/S9F1 Figure 26—Example of Decomposition Structure Number: AKB024 P. 83

 Used at: Author:
 Project:
 Model:

 Notes:

 Context: Publication

 X

A-0 Context of Function A0 (Decomposition Structure) QGL310

<work>

 Recommended

 Draft

 Working

 Reader DateIDEF0 Working Group
IEEE IDEF0 Standard
Figures for Standard

1 2 3 4 5 6 7 8 9 10

Date: Oct 1996
Rev: Jun 1997

 Page: Number: Title:

TOP

Function A0

Input Arrow

Mechanism Arrow

Control Arrow

Output Arrow

Purpose:

Viewpoint:

Model Name:

Thjkdl sldk lkwejpdjlsf lewrjlklksdf jtkrjtelkfd.

Dkfjwlkenr lksjdflkj.

Jdffher Friweo Trkkk TO-BE (JFT)

0

 Used at: Author:
 Project:
 Model:

 Notes:

 Context: Publication

 X

A3 Function A3 (Decomposition Structure) QGL352

<work>

 Recommended

 Draft

 Working

 Reader DateIDEF0 Working Group
IEEE IDEF0 Standard
Figures for Standard

1 2 3 4 5 6 7 8 9 10

Date: Oct 1996
Rev: Jun 1997

 Page: Number: Title:

Function A31

Function A32

Function A33
I1

M1

C1

O1

3

2

1

 Used at: Author:
 Project:
 Model:

 Notes:

 Context: Publication

 X

A0 Function A0 (Decomposition Structure) QGL320

<work>

 Recommended

 Draft

 Working

 Reader DateIDEF0 Working Group
IEEE IDEF0 Standard
Figures for Standard

1 2 3 4 5 6 7 8 9 10

Date: Oct 1996
Rev: Jun 1997

 Page: Number: Title:

Function A1

Function A2

Function A3

1

2

3

I1

M1

C1

O1

 Used at: Author:
 Project:
 Model:

 Notes:

 Context: Publication

 X

A32 Function A32 (Decomposition Structure) QGL397

<work>

 Recommended

 Draft

 Working

 Reader DateIDEF0 Working Group
IEEE IDEF0 Standard
Figures for Standard

1 2 3 4 5 6 7 8 9 10

Date: Oct 1996
Rev: Jun 1997

 Page: Number: Title:

Function A321

1

Function A322

2

Function A323

3

I1

M1

C1

O1

 Used at: Author:
Project:
Model:

Notes:

IEEE IDEF0 Working Group
IDEF0 Language Formalization
Formalization Figures (FF)

1 2 3 4 5 6 7 8 9 10

Date:
Rev:

Oct 1996
Feb 1998

X Publication
Recommended
Draft
Working

 Reader Date Context:

Record

1

Deliver

2

Bill

3

C1 Tax Requirements

Fulfillment Data

Customer Data

Transactions

Invoices

Account Entries

Price Tables

M2 Account Clerk

Ordered Product

Tax Tables

Delivered Product
Inventory Entries

Billing Entries

M1 Delivery Person

Orders

2 The join (2O2 and 3O1) to O2 means that the bundle Account
Entries includes both Inventory Entries and Billing Entries.

1 The branches 1I1 to (2C1 and 3C1 and 3C2) mean that the
bundle Fulfillment Data contains the Customer Data needed by
Function 2 and the Price and Tax Tables needed by Function 3.x

x

O1

O2

O3

I1

I2
2

1 1

3 The branch 3O2 to (O3 and 1I2) mean that
Invoices are needed both by Function 1 and by
some activity external to this model.

3

 Page: A0 Title: Fulfill Orders Number: MDS008

 Model Page: FF/S11F1 Figure 27—Connections among Boxes Number: AKB038 P. 84

 Used at: Author:
Project:
Model:

Notes:

IEEE IDEF0 Working Group
IDEF0 Language Formalization
Formalization Figures (FF)

1 2 3 4 5 6 7 8 9 10

Date:
Rev:

Oct 1996
Feb 1998

X Publication
Recommended
Draft
Working

 Reader Date Context:

Function
One

Function
Two

Function
Three

C2

M1

C1

I1

1

2

3

1 Boundary Arrows I1, C1, C2, O1, M1, and
M2: One end is not attached to a box.

2 Internal Arrows 1O1 to 2C1, 2O1
to 3I1, and 3O2 to 1I1:
Both source and use are shown;
each end is attached to a box.

2

2

1

1

1 1

1

2

M2

1

 Model Page: FF/S12F1 Figure 28—Boundary Arrows and Internal Arrows Number: AKB025 P. 85

M1

C1

 Used at: Author:
Project:
Model:

Notes:

IEEE IDEF0 Working Group
IDEF0 Language Formalization
Formalization Figures (FF)

1 2 3 4 5 6 7 8 9 10

Date:
Rev:

Oct 1996
Feb 1998

X Publication
Recommended
Draft
Working

 Reader Date Context:

Function A

1

Function B

2

Function C

3

C1

M1

I1
O1

1 Control loopback is always drawn as an "up and over" arrow. Control
loopback is illustrated here by arrow 3O1:2C1 and by arrows (2O1,3O2):1C1.

1

1

1

1

 Model Page: FF/S13F1 Figure 29—Loopback Layout (Control) Number: AKB026 P. 86

M1

3

2

1

 Used at: Author:
Project:
Model:

Notes:

IEEE IDEF0 Working Group
IDEF0 Language Formalization
Formalization Figures (FF)

1 2 3 4 5 6 7 8 9 10

Date:
Rev:

Oct 1996
Feb 1998

X Publication
Recommended
Draft
Working

 Reader Date Context:

Function A

1

Function B

2

Function C

3

C1

M1

I1 O1

2 Mechanism loopback is always drawn as an "down and under" arrow.
Arrow 3O1:(2M1,1M1) illustrates mechanism loopback.

1

2

1 Input loopback is always drawn as an "down and under" arrow.
Arrow 2O2:1I2 illustrates input loopback.

 Model Page: FF/S13F2 Figure 30—Loopback Layout (Input and Mechanism) Number: AKB027 P. 87

1

M1

 Used at: Author:
Project:
Model:

Notes:

IEEE IDEF0 Working Group
IDEF0 Language Formalization
Formalization Figures (FF)

1 2 3 4 5 6 7 8 9 10

Date:
Rev:

Oct 1996
Feb 1998

X Publication
Recommended
Draft
Working

 Reader Date Context:

Activity
A1321

1

Activity
A1322

2

Activity
A1323

3

C1 Parental Control

M1 Parental Mechanism

I1
Object A

O1
Object Z

Object B

Object Y

Mechanism Loopback

Input Loopback

 Used at: Author:
 Project:
 Model:

 Notes:

 Context: Publication

 X

AC/A132 Activity A132 RQG249

<work>

 Recommended

 Draft

 Working

 Reader DateRoger Quincy Gordon
Boundary Definitions
Arrow Correspondence (AC)

1 2 3 4 5 6 7 8 9 10

Date: Oct 1996
Rev: Jun 1997

 Node: Number: Title:

Child Diagram

Figure 14. Boundary Arrow Correspondence

The outputs of the child diagram
are the outputs of the parent box.

The controls of the child diagram
are the controls of the parent box.

The mechanisms
of the child diagram
are the mechanisms
of the parent box.

The inputs of the
child diagram
are the inputs of
the parent box.

Activity
A131

1

 Activity
 A132

2
Activity
A133

3

C1 Control

M1 Mechanism

I1
Input O1

Output

Control Loopback

Object A

Object Z

Parental Control

Parental Mechanism

 Used at: Author:
 Project:
 Model:

 Notes:

 Context: Publication

 X

Parent Diagram Containing Parent Box RQG231

<work>

 Recommended

 Draft

 Working

 Reader DateRoger Quincy Gordon
Boundary Definitions
Arrow Correspondence (AC)

1 2 3 4 5 6 7 8 9 10

Date: Oct 1996
Rev: Jun 1997

 Node: Number: Title:AC/A13

Parent Diagram

 Model Page: FF/S14F1 Figure 31—Boundary Arrow Correspondence Number: AKB028 P. 88

 Used at: Author:
Project:
Model:

Notes:

IEEE IDEF0 Working Group
IDEF0 Language Formalization
Formalization Figures (FF)

1 2 3 4 5 6 7 8 9 10

Date:
Rev:

Oct 1996
Feb 1998

X Publication
Recommended
Draft
Working

 Reader Date Context:

Valid boundary arrows

Invalid boundary arrows

1

2

3

C 1

O 1

M 1

I 1

I 1

I 1

C 1C 1

O 1

O 1

M 1M 1

1

2

3

C 1

O 1

M 1

I1

 Model Page: FF/S15F1 Figure 32—Single Root Boundary Arrows Number: AKB029 P. 89

O1

O1

O1

O1

3

2

1

1

2

3

 Used at: Author:
Project:
Model:

Notes:

IEEE IDEF0 Working Group
IDEF0 Language Formalization
Formalization Figures (FF)

1 2 3 4 5 6 7 8 9 10

Date:
Rev:

Oct 1996
Feb 1998

X Publication
Recommended
Draft
Working

 Reader Date Context:

O1

O2

C1C2 C3

I1
I2

1

2

3

M1M2

2 Control used as input: C1 on the
parent box is 2I1 in the child diagram.

3 Input used as control: I2 on the parent
box is 3C1 in the child diagram.

1 Mechanism used as input: M2 on the
parent box is 1I3 in the child diagram.

 Model Page: FF/S16F1 Figure 33—Changing Arrow Roles Number: AKB030 P. 90

M2 M1

C3

O2

O1

 Used at: Author:
Project:
Model:

Notes:

IEEE IDEF0 Working Group
IDEF0 Language Formalization
Formalization Figures (FF)

1 2 3 4 5 6 7 8 9 10

Date:
Rev:

Oct 1996
Feb 1998

X Publication
Recommended
Draft
Working

 Reader Date Context:

Activity A14

C2

O1

M1

I1

4

1 The arrow A1.I1:4I1
reappears on diagram A143.

2 The arrow A1.C2:4C2
reappears on diagram A144.

3 The arrow A1.4O2:O1
disappears on diagram A1412.

4 The arrow A1.M1:4M1
reappears on diagram A14231.

A1 Diagram
Fragment

5 The tunneled boundary arrows I1, C2,
O1, and M1 shall not correspond to
arrows on diagram A14, which is the
immediate child diagram for box 4 in
diagram A1.

C1

O2

6 The tunneling of arrows shall not result
in a syntactically invalid child diagram.
As shown by arrows C1 and O2, a box
shall have at least one control and one
output which are not tunneled.

 Model Page: FF/S17F1 Figure 34—Arrow Tunnel Notation (Connected End) Number: AKB031 P. 91

O2

O1

 Used at: Author:
Project:
Model:

Notes:

IEEE IDEF0 Working Group
IDEF0 Language Formalization
Formalization Figures (FF)

1 2 3 4 5 6 7 8 9 10

Date:
Rev:

Oct 1996
Feb 1998

X Publication
Recommended
Draft
Working

 Reader Date Context:

Activity A3462

C1

O1

M1

I1

A346 Diagram
Fragment

1 The source of the arrow tunneled
into diagram A346 at 2I1 is 0I5.
This represents an arrow explicitly
tunneled in from the external
environment of the model through
the A-0 context diagram interfaces.

2 The source of the arrow tunneled into
diagram A346 at 2C1 is A0.3C1.

3 The arrow tunneled out of
diagram A346 at 2O1 reappears
at A3.4O1.

4 The source of the arrow tunneled into diagram
A346 at 2M1 is 0M. This represents an arrow
implicitly tunneled in from the external
environment of the model through the A-0
diagram.

A0.3C1

0M

0I5 A3.4O1

5 These boundary arrows shall not
correspond to arrows connecting to the
immediate parent box A34.6 on the
parent diagram A34.

2

 Model Page: FF/S17F2 Figure 35—Arrow Tunnel Notation (Unconnected End) Number: AKB032 P. 92

 Used at: Author:
Project:
Model:

Notes:

IEEE IDEF0 Working Group
IDEF0 Language Formalization
Formalization Figures (FF)

1 2 3 4 5 6 7 8 9 10

Date:
Rev:

Oct 1996
Feb 1998

X Publication
Recommended
Draft
Working

 Reader Date Context:

Function
A21

1

C1

O1

M1

I1

I2

C2

O2

M2

Function
A22

2

I3

Function
A23

3

3 Arrow I3:3I3 reappears on diagram A233.

2 Arrow 3O1:O1 disappears on diagrams A231 and A233.

1 Arrow 2O1:3I1 reappears on diagrams A231 and A2321. 4 Arrow C1:3C2 reappears on diagram A2321.

1
2

3

4

 Page: FS/A2 Title: Function A2 Number: IWG78

 Model Page: FF/S18F1 Figure 36—Example of Tunneled Arrows (A2) Number: AKB039 P. 93

M2 M1

 Used at: Author:
Project:
Model:

Notes:

IEEE IDEF0 Working Group
IDEF0 Language Formalization
Formalization Figures (FF)

1 2 3 4 5 6 7 8 9 10

Date:
Rev:

Oct 1996
Feb 1998

X Publication
Recommended
Draft
Working

 Reader Date Context:

C1

A2.3O1A2.3I1

I2

O2

M1

A2.3I3

1 The light gray ICOM codes and arrows show the
paths that tunneled arrows would have taken
were they explicitly shown.

2 Note that the diagram remains syntactically correct without the
tunneled arrows. A diagram may not depend upon a tunneled arrow
for correct syntax.

Function
A233

3

Function
A232

2

Function
A231

1

A2.3C2

 Page: FS/A23 Title: Function A23 Number: IWG83

 Model Page: FF/S18F2 Figure 37—Example of Tunneled Arrows (A23) Number: AKB040 P. 94

M1

 Used at: Author:
Project:
Model:

Notes:

IEEE IDEF0 Working Group
IDEF0 Language Formalization
Formalization Figures (FF)

1 2 3 4 5 6 7 8 9 10

Date:
Rev:

Oct 1996
Feb 1998

X Publication
Recommended
Draft
Working

 Reader Date Context:

Function
A2311

1

M1

A2.3I1

C1

Function
A2312

2

Function
A2313

3

I1
A2.3O1

 Page: FS/A231 Title: Function A231 Number: IWG96

 Model Page: FF/S18F3 Figure 38—Example of Tunneled Arrows (A231) Number: AKB041 P. 95

M1

 Used at: Author:
Project:
Model:

Notes:

IEEE IDEF0 Working Group
IDEF0 Language Formalization
Formalization Figures (FF)

1 2 3 4 5 6 7 8 9 10

Date:
Rev:

Oct 1996
Feb 1998

X Publication
Recommended
Draft
Working

 Reader Date Context:

Function
A2321

1

A2.3C2

M1

I1

C1

O2

Function
A2322

2

Function
A2323

3

A2.3I1 O1

1 The light gray ICOM codes and arrows show the
paths that the tunneled arrows would have taken
were they explicitly shown.

2 Note that the diagram remains syntactically correct
without the tunneled arrows. A diagram may not
depend upon a tunneled arrow for correct syntax.

 Page: FS/A232 Title: Function A232 Number: IWG107

 Model Page: FF/S18F4 Figure 39—Example of Tunneled Arrows (A232) Number: AKB042 P. 96

M1

I1

C1

 Used at: Author:
Project:
Model:

Notes:

IEEE IDEF0 Working Group
IDEF0 Language Formalization
Formalization Figures (FF)

1 2 3 4 5 6 7 8 9 10

Date:
Rev:

Oct 1996
Feb 1998

X Publication
Recommended
Draft
Working

 Reader Date Context:

Function
A23211

1

M1

I1

C1

Function
A23212

2

Function
A23213

3

A2.3I1
O1

O2

A2.3C2

 Page: FS/A2321 Title: Function A2321 Number: IWG102

 Model Page: FF/S18F5 Figure 40—Example of Tunneled Arrows (A2321) Number: AKB043 P. 97

I1

M1

 Used at: Author:
Project:
Model:

Notes:

IEEE IDEF0 Working Group
IDEF0 Language Formalization
Formalization Figures (FF)

1 2 3 4 5 6 7 8 9 10

Date:
Rev:

Oct 1996
Feb 1998

X Publication
Recommended
Draft
Working

 Reader Date Context:

Function
A2331

1

M1

I1

C1

Function
A2332

2

Function
A2333

3

A2.3I3

A2.3O1

C2

 Page: FS/A233 Title: Function A233 Number: IWG121

 Model Page: FF/S18F6 Figure 41—Example of Tunneled Arrows (A233) Number: AKB044 P. 98

I1

 Used at: Author:
Project:
Model:

Notes:

IEEE IDEF0 Working Group
IDEF0 Language Formalization
Formalization Figures (FF)

1 2 3 4 5 6 7 8 9 10

Date:
Rev:

Oct 1996
Feb 1998

X Publication
Recommended
Draft
Working

 Reader Date Context:

 [A0]
 Manufacture
 Widget

[A1]
Plan
Manufacturing

 [A2]
 Constrain
 Production

[A3]
Produce
Widget

[A11]
Identify
Manufacturing
Methods

[A12]
Estimate
Production
Constraints

[A13]
Plan
Production

[A14]
Plan
Support
Activities

[A21]
Set
Production
Parameters

[A24]
Estimate
Costs

[A23]
Schedule
Coordinations

[A22]
Schedule
Production
Milestones

[A25]
Budget
Resources

[A31]
Acquire
External
Components

[A32]
Produce
Internal
Components

[A33]
Assemble
Components

[A34]
Test
Widget

[A35]
Ship
Widget

 Model Page: FF/S19F1 Figure 42—Example Node Tree Number: AKB033 P. 99

 Used at: Author:
Project:
Model:

Notes:

IEEE IDEF0 Working Group
IDEF0 Language Formalization
Formalization Figures (FF)

1 2 3 4 5 6 7 8 9 10

Date:
Rev:

Oct 1996
Feb 1998

X Publication
Recommended
Draft
Working

 Reader Date
Context:

[A0] Manufacture Widget

[A1] Plan Manufacturing

[A11] Identify Manufacturing Methods

[A12] Estimate Production Constraints

[A13] Plan Production

[A14] Plan Support Activities

[A2] Constrain Production

[A21] Set Production Parameters

[A22] Schedule Production Milestones

[A23] Schedule Coordinations

[A24] Estimate Costs

[A25] Budget Resources

[A3] Produce Widget

[A31] Acquire External Components

[A32] Produce Internal Components

[A33] Assemble Components

[A34] Test Widget

[A35] Ship Widget

 Model Page: FF/S19F2 Figure 43—Example Node Index Number: AKB034 P. 100

 Used at: Author:
Project:
Model:

Notes:

IEEE IDEF0 Working Group
IDEF0 Language Formalization
Formalization Figures (FF)

1 2 3 4 5 6 7 8 9 10

Date:
Rev:

Oct 1996
Feb 1998

X Publication
Recommended
Draft
Working

 Reader Date Context:

b1

FEO1

b2

FEO2

b3

FEO3

x

x

x
x

s1

s2

s3

s4

s5 s6

s7

s8 s9

s10

j1

j2

 Model Page: FF/S21F1 Figure 44—Example IDEF0 Diagram Structure Number: CM005 P. 101

 Used at: Author:
Project:
Model:

Notes:

IEEE IDEF0 Working Group
IDEF0 Language Formalization
Formalization Figures (FF)

1 2 3 4 5 6 7 8 9 10

Date:
Rev:

Oct 1996
Feb 1998

X Publication
Recommended
Draft
Working

 Reader Date Context:

b1

b2

s1

s10

s2 b3

*j1

s5

s6s8

s9

s4

s7

c o

m

o

l r r

s3

o

*j2
l

r

i

c c

l

o

 Model Page: FF/S21F2 Figure 45—IDEF0 Graph for Example Diagram Structure Number: CM010 P. 102

 Used at: Author:
Project:
Model:

Notes:

IEEE IDEF0 Working Group
IDEF0 Language Formalization
Formalization Figures (FF)

1 2 3 4 5 6 7 8 9 10

Date:
Rev:

Oct 1996
Feb 1998

X Publication
Recommended
Draft
Working

 Reader Date Context:

 Model Page: FF/S22F1 Figure 46—Dot and Arrow Representation of a Tree Number: CM015 P. 103

 Used at: Author:
Project:
Model:

Notes:

IEEE IDEF0 Working Group
IDEF0 Language Formalization
Formalization Figures (FF)

1 2 3 4 5 6 7 8 9 10

Date:
Rev:

Oct 1996
Feb 1998

X Publication
Recommended
Draft
Working

 Reader Date Context:

b1

FEO1

b2

FEO2

x
x

x

s1

s2

s3

s4

s5

 Model Page: FF/S23F1 Figure 47—Downward Tunneling Number: CM020 P. 104

 Used at: Author:
Project:
Model:

Notes:

IEEE IDEF0 Working Group
IDEF0 Language Formalization
Formalization Figures (FF)

1 2 3 4 5 6 7 8 9 10

Date:
Rev:

Oct 1996
Feb 1998

X Publication
Recommended
Draft
Working

 Reader Date Context:

 D0

 D1

 D2

0

1

 b3

 b4

 b2

 b1

1

2

 b0

0

s0

s3

s1

s2

s4

s6
s5

c(s4) = s0
c(s5) = s1
c(s7) = s3

c(s9) = s4
c(s11) = s2
c(s13) = s6
c(s15) = s5
c(s16) = s8

s7

s8

s9

s10

s12
s13

j0
s14

s11

11

12

ω

s15

s16

 Model Page: FF/S24F1 Figure 48—Example IDEF0 Model Structure Number: CM025 P. 105

	Title Page
	Introduction
	Participants
	CONTENTS
	1. Overview
	1.1 Scope
	1.2 Purpose

	2. Definitions, acronyms, and abbreviations
	2.1 Definitions
	2.2 Acronyms and abbreviations

	3. References
	4. IDEF0 models
	5. IDEF0 syntax
	6. IDEF0 semantics
	6.1 Box/arrow semantics
	6.2 Branching and joining arrows
	6.3 Arrow meaning conventions
	6.4 Ambiguous arrow segments
	6.5 Ambiguous arrow attachments
	6.6 Arrow role conventions
	6.7 Activations
	6.8 Concurrent activation

	7. IDEF0 diagrams
	7.1 Diagram identification
	7.2 A-0 context diagram
	7.3 Model name
	7.4 Model viewpoint
	7.5 Model purpose
	7.6 Optional context diagrams
	7.7 Decomposition diagrams
	7.8 Parent/child diagram relations

	8. IDEF0 model pages
	8.1 Diagram pages
	8.2 Text pages
	8.3 Glossary pages
	8.4 FEO pages
	8.5 Other pages

	9. IDEF0 diagram features
	9.1 Boxes
	9.2 Interbox connections
	9.3 Boundary arrow segments
	9.4 Tunneled arrows
	9.5 Model notes

	10. IDEF0 reference expressions
	10.1 Box numbers
	10.2 Node numbers
	10.3 Diagram numbers
	10.4 Node tree
	10.5 Node index
	10.6 Diagram references
	10.7 Page references

	11. IDEF0 diagram feature references
	Annex A—Bibliography
	Annex B—IDEF0 language; abstract formalization
	Annex C—Examples of IDEF0 usage and style

